Utilização de enzimas do estresse oxidativo como biomarcadoras de impactos ambientais

Autores/as

  • Antônio JD Cogo Centro Universitário Vila Velha
  • Arthur F. Siqueira Centro Universitário Vila Velha
  • Alessandro C Ramos Centro Universitário Vila Velha
  • Zilma MA Cruz Centro Universitário Vila Velha
  • Ary G Silva Centro Universitário Vila Velha

Resumen

O uso intensivo de compostos xenobióticos em atividades humanas é responsável pela contaminação de vários ambientes, provocando alterações em diferentes níveis ecológicos. O monitoramento das possíveis consequências do uso indiscriminado desses compostos é realizado por intermédio de biomarcadores ou bioindicadores, principalmente em ambientes aquáticos, nos quais o organismo apresenta contato direto com o contaminante, fato que propicia o diagnóstico do impacto para posterior reparo ou, até mesmo, recuperação do ambiente. Atualmente, um dos biomarcadores utilizados são as enzimas, uma vez que o aumento ou a inibição da atividade enzimática podem indicar algum tipo de resposta ao estresse ambiental, segundo ensaios realizados in situ ou in vitro. Diversos estudos citados na literatura utilizam a determinação da atividade enzimática, através de comparações com grupos controles ou por parâmetros encontrados antes e depois de iniciar uma atividade que poderia causar algum estresse para a área trabalhada. As enzimas do estresse oxidativo, representadas pela catalase, superóxido dismutase, glutationa redutase e peroxidase, são necessárias para a manutenção da vida por estarem associadas ao processo de detoxificação de compostos formados nos seres vivos, e são consideradas importantes ao permitirem a sobrevivência de organismos em ambientes impactados. A análise da atividade dessas enzimas permite maior controle do ambiente e funciona como sinal de alerta de contaminação, sendo, portanto, uma técnica importante para a vigilância ambiental e controle das atividades humanas sobre o ambiente.

Palabras clave:

Monitoramento ambiental, biomarcadores, impactos ambientais, estresse oxidativo, atividade enzimática

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aebi H (1984) Catalase in Vitro. Methods in Enzymology 105:121-126.

Alves SRC, Severino PC, Ibbotson DP, Silva AZ, Lopes FRAS, Sáenz LA & Bainy ACD (2002) Effects of furadan in the brown mussel Perna perna and in the mangrove oyster Crassostrea rhizophorae. Marine Environmental Research 54:241-245.

Anandraj A, Marshall DJ, Gregory MA & McClurg TP (2002) Metal accumulation, filtration and O2 uptake rates in the mussel Perna perna (Mollusca: Bivalvia) exposed to Hg2+, Cu2+ and Zn2+. Comparative Biochemistry and Physiology Part C 132:355-363.

Arias ARL, Buss DF, Alburquerque C, Inácio AF, Freire MM, Egler M, Mugnai R & Baptista DF (2007) Utilização de bioindicadores na avaliação de impacto e no monitoramento da contaminação de rios e córregos por agrotóxicos. Ciência e saúde coletiva 12:61-72.

Aspuro-Hernandez E, Garcia-Orozco KD, Muhlia-Almazan LTS, Robles-Sanches RM, Hernandez J, Gonzales-Aguilar G, Yepiz- Plascenci G & Sotelo-Mundo RR (2008) Shrimp thioredoxin is a potent antioxidant protein. Comparative Biochemistry and Physiology Part C 148:94-99.

Atli G & Canli M (2007) Enzymatic responses to metal exposures in a freshwater fish Oreochromis niloticus. Comparative Biochemistry and Physiology Part C 145:282-287.

Avilez IM, Hori TSF, Almeida LC, Hackbarth A, Bastos Neto JC, Bastos VLFC & Moraes G (2008) Effects of phenol in antioxidant metabolism in matrinxã, Brycon amazonicus (Teleostei; Characidae). Comparative Biochemistry and physiology Part C 148:136-142.

Bainy ACD, Almeida EA, Müller IC, Ventura EC & Medeiros ID (2000) Biochemical responses in farmed mussel Perna perna transplanted to contaminated sites on Santa Catarina Island, SC, Brazil. Marine Environmental Research 50:411-416.

Bainy ACD, Saito E, Carvalho PSM & Junqueira VBC (1996) Oxidative stress in Gill, erythrocytes, liver and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site. Aquatic Toxicology 34:151-162.

Berg JM, Tymoczko JL & Stryer L (2004) Bioquímica. 5.ed. Rio de Janeiro: Guanabara Koogan.

Bernet D, Schmidt H, Wahli T & Burkardt-Holm P (2001) Effluent from a sewage treatment works causes changes in serum chemistry of brown trout (Salmo trutta L.). Ecotoxicology and Environmental Safety 48:140-147.

Bertin G & Averbeck D (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88:1549-1559.

Bocchetti R, Fattorini D, Pisanelli B, Macchia S, Oliviero L, Pilato F, Pellegrini D & Regoli F (2008) Contaminant accumulation and biomarker responses in caged mussels, Mytilus galloprovincialis, to evaluate bioavailability and toxicological effects of remobilized chemicals during dredging and disposal operations in harbour areas. Aquatic Toxicology 89:257-266.

Bonnet JL, Bonnemoy F, Dusser M & Bohatier J (2008) Toxicity assessment of the herbicides sulcotrione and mesotrione toward two reference environmental microorganisms: Tetrahymena pyriformis and Vibrio fischeri. Archives of Environmental Contamination and Toxicology 55:576-583.

Carletti E, Sulpizio M, Bocciarelli T, Boccio PD, Federici L & Di Ilio C (2008) Glutathione transferases from Anguilla anguilla liver: Identification, cloning and functional characterization. Aquatic Toxicology 90:48-57.

Chandran R, Sivakumar AA, Mohandass S & Aruchami M (2005) Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica. Comparative Biochemistry and physiology Part C 140:422-426.

Company R, Serafim A, Bebianno MJ, Cosson R, Shillito B & Fiala- Mèdioni A (2004) Effect of cadmium, copper and Mercury on antioxidant enzyme activities and lipid peroxidation in the gills of the hydrothermal vent mussel Bathymodiolus azoricus. Marine Environmental Research 58:377-381.

Dautremepuits C, Paris-Palacios S, Betoulle S & Vernet G (2004) Modulation in hepatic and head kidney parameters of carp (Cyprinus carpio L.) induced by copper and chitosan. Comparative Biochemistry and Physiology Part C 137:325-333.

Flohé L & Ötting F (1884) Superoxide Dismutase Assays. Methods in Enzymology 105:93-94.

Gu J, Li Y, Xie L & Zhang R (2006) Metal accumulation and enzyme activities in gills and digestive gland of pearl oyster (Pinctada fucata) exposed to copper. Comparative Biochemistry and Physiology Part C.

Hansen BH, Romma S, Garmo A, Olsvik PA & Andersen RA (2006) Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comparative Biochemistry and Physiology Part C 143:263-274.

Huber PC & Almeida WP (2008) Glutationa e enzimas relacionas: papel biológico e importância em processos patológicos. Química Nova 31:1170-1179.

Ivanina AV, Habinck E & Sokolova IM (2008) Differential sensitivity to cadmium of key mitochondrial enzymes in the eastern oyster, Crassostrea virginica Gmelin (Bivalvia: Ostreidae). Comparative Biochemistry and Physiology Part C 148:72-79.

Lam WG, Wong MK, Chen N & Sin YM (1995) Effect of combined copper, zinc, chromium and selenium by orthogonal array design on alkaline phosphatase activity in liver of the red sea bream, Chrysophrys major. Aquaculture 131:219-230.

Lehninger AL, Nelson DL & Cox MM (1995) Princípios de Bioquímica. 2.ed. São Paulo: Savier.

Letendre J, Chouquet B, Rocher B, Manduzio H, Leboulenger F & Durand F (2008) Differential pattern of Cu/Zn superoxide dismutase isoforms in relation to tidal spatio-temporal changes in the blue mussel Mytilus edulis. Comparative Biochemistry and Physiology Part C 148:211-216.

Levy JL, Angel BM, Stauber JL, Poon WL, Simpson SL, Cheng SH & Jolley DF (2008) Uptake and internalization of copper by three marine microalgae: Comparison of copper-sensitive and copper-tolerant species. Aquatic Toxicology 89:82-93.

Livingstone DR (1993) Biotechnology and pollution monitoring: use of molecular biomarkers in the aquatic environment. Journal Chemistry Technology and Biotechnology 57:195-211.

McCord JM & Fridovich I (1969) Superoxide Dismutase: an enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry 244:6049-6055.

Monserrat JM, Lima JV, Ferreira JLR, Acosta D, Garcia ML, Ramos PB, Moraes TB, Santos LC & Amado LL (2008) Modulation of antioxidant and detoxification responses mediated by lipoic acid in the fish Corydoras paleatus (Callychthyidae). Comparative Biochemistry and Physiology Part C 148:287-292.

Ng TY-T, Rainbow PS, Amiard-Triquet C, Amiard J-C & Wang W-X (2008) Decoupling of cadmium biokinetics and metallothionein turnover in a marine polychaete after metal exposure. Aquatic Toxicology 89:47-54.

Nicholson S & Lam PKS (2005) Pollution monitoring in Southeast Asia using biomarker in the mytilid mussel Perna viridis (Mytilidae: Bivalvia). Environment International 31:121-132.

Rashed NM (2001) Monitoring of environmental heavy metals in fish from Nasser Lake. Environment International 27:27-33.

Regoli F, Nigro M & Orlando E (1998) Lysosomal and antioxidant responses to metals in the Antarctic scallop Adamussium colbecki. Aquatic Toxicology 40:375-392.

Tekman B, Ozdemir H, Senturk M & Ciftci M (2008) Purification and characterization of glutathione reductase from rainbow trout (Oncorhynchus mykiss) liver and inhibition effects of metal ions on enzyme activity. Comparative Biochemistry and Physiology Part C 148:117-121.

Valavanidis A, Vlahogianni T, Dassenakis M & Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety 64:178-189.

Ventura EC, Gaelzer LR, Zanette J, Marques MRF & Bainy ACD (2002) Biochemical indicators of contaminant exposure in spotted pigfish (Orthopristis rubber) caught at three bays of Rio de Janeiro coast. Marine Environmental Research 54:775-779.

Zanette J, Nunes FF, Medeiros ID, Siebert MN, Mattos JJ, Lüchmann KH, Melo CMR & Bainy ACD (2008) Comparison of the antioxidant defense system in Crassostrea rhizophorae and Crassostrea gigas exposed to domestic sewage discharges. Marine Environmental Researc 66:196-198.

Cómo citar

Cogo, A. J., Siqueira, A. F., Ramos, A. C., Cruz, Z. M., & Silva, A. G. (2009). Utilização de enzimas do estresse oxidativo como biomarcadoras de impactos ambientais. Natureza Online, 7(1), 37–42. Recuperado a partir de https://naturezaonline.com.br/revista/article/view/401

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 7 8 > >>