Desvendando a H+-Pirofosfatase vacuolar e o seu papel na biotecnologia vegetal

Autores/as

  • Arthur F Siqueira Centro Universitário Vila Velha
  • Zilma MA Cruz Centro Universitário Vila Velha
  • Suellen Queiroz Centro Universitário Vila Velha
  • Osvaldo JAM Rocha Centro Universitário Vila Velha
  • Daniela NES Soares Centro Universitário Vila Velha
  • Alessandro C Ramos Centro Universitário Vila Velha

Resumen

As proteínas de membrana são de fundamental importância para manter o funcionamento da célula e a homeostase iônica dos seres-vivos. Há uma diversidade de proteínas que ajudam a manter o gradiente iônico entre o meio intra e extracelular, entre as quais, a H+-ATPase e a H+-pirofosfatase (H+-PPase) tem um importante destaque. A H+-PPase está presente na membrana do vacúolo das células das plantas e sua principal função é transportar H+ para o lúmem, criando uma força elétron-motriz que impulsiona o transporte secundário de íons e compostos orgânicos. Esta enzima é diferencialmente regulada em condições de stress conferindo uma maior tolerância das plantas aos fatores bióticos e abióticos. Atualmente, sabe-se que o gene que codifica a H+-PPase quando super-expressado, estimula o crescimento vegetal via um maior desenvolvimento radicular e, conseqüentemente, maior absorção de água e nutrientes. Além disso, uma maior resistência ao stress salino foi observada. Novos estudos são realizados para elucidar os processos fisiológicos causados pela super-expressão da H+-PPase objetivando uma possível aplicação na produção vegetal, em solos com baixa fertilidade.

Palabras clave:

H+-PPase, pirofosfatase, AVP1, super-expressão, estresse

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Zilma MA Cruz, Centro Universitário Vila Velha

Mestrado em Ecologia de Ecossitemas.

Osvaldo JAM Rocha, Centro Universitário Vila Velha

Mestrado em Ecologia de Ecossitemas.

Daniela NES Soares, Centro Universitário Vila Velha

Mestrado em Ecologia de Ecossitemas.

Alessandro C Ramos, Centro Universitário Vila Velha

Mestrado em Ecologia de Ecossitemas.

Citas

Baykov AA, Bakuleva NP & Rea PA (1993) Steady-state kinetics of substrate hydrolysis by vacuolar H+-pyrophosphatase: a simple three- state model. European Journal of Bichemstry 217: 755-762.

Baykov AA, Cooperman BS, Goldman A & Lahti R (1999) Cytoplasmic inorganic pyrophosphatase. Progress in Molecular and Subcellular Biolology 23: 127-150.

Britten CJ, Turner JC & Rea PA (1989) Identification and purification of substrate-binding subunit of higher plant H+-translocating inorganic pyrophosphatase. FEBS Letters 256: 200-206.

Canellas LP, Olivares FL, Okorokova-Façanha AL & Façanha AR (2002) Humic Acids Isolated from Earthworm Compost Enhance Root Elongation, Lateral Root Emergence, and Plasma Membrane H+ATPase Activity in Maize Roots. Plant Physiology 130: 1951–1957.

Carystinos GD, MacDonald HR, Monroy AF, Dhindsa RS & Poole RJ (1995) Vacuolar H+-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiology 108: 641– 649.

Cooperman BS, Baykov AA& Lahti R(1992) Evolutionaryconservation of the active site of soluble inorganic pyrophosphatase. Trends in Biochemical Sciences 17: 262-266.

Davies JM, Darley CP & Sanders D (1997) Energetics of the plasma membrane pyrophosphatase. Trends in Plant Sciences 2: 9–10.

Davies JM, Poole RJ, Rea PA & Sanders D (1992) Potassium transport into plant vacuoles energized directly by a proton- pumping inorganic pyrophosphatase. Proceedings of the National Acaddemy of Sciences USA 89: 11701-11705.

Davies JM, Poole RJ & Sanders D (1993) Analysis of the substrate binding site and carboxyl terminal region of vacuolar H+- pyrophosphatase of mung bean with peptide antibodies. Biochimica et Biophysica Acta 1141: 29-36.

Drozdowicz YM & Rea PA (2001) Vacuolar H+-pyrophosphatases: from evolutionary backwaters into mainstream. Trends in Plant Science 6: 206–211.

Drozdowicz YM, Lu YP, Patel V, Fitz-Gibbon S, Miller JH & Rea RA (1999) A thermostable vacuolar-type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum: implications for the origins of pyrophosphate-energized pumps. FEBS Letters 460: 505-512.

Façanha AR & Méis L (1998) Reversibility of H1-ATPase and H1- Pyrophosphatase in Tonoplast Vesicles from Maize Coleoptiles and Seeds. Plant Physiology 116: 1487–1495.

Façanha AR, Façanha ALO, Olivares FL, Guridi F, Santos GA, Velloso ACX, Rumjanek VM, Brasil F, Schripsema J, Braz-Filho R, Oliveira MA & Canellas LP (2002) Bioatividade de ácidos húmicos: efeitos sobre o desenvolvimento radicular e sobre a bomba de prótons da membrana plasmática. Pesquisa Agropecuária Brasileira 37: 1301-1310

Ferrol N, Pozo MJ, Antelo M & Azcón-Aguilar C (2002) Arbuscular mycorrhizal symbiosis regulates plasma membrane H+-ATPase gene expression in tomato plants. Journal of Experimental Botany 53: 1683–1687.

Gaxiola RA, Fink GR& Hirschi KD(2002) Geneticmanipulationofvacuolar proton pumps and transporters. Plant Physiology 129: 967-973.

Gaxiola RA, Palmgren MG & Schumacher K (2007) Plant proton pumps. FEBS Letters 581: 2204-2214.

Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL & Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proceedings of the National Acaddemy of Sciences USA 96: 1480-1485.

Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M & Gianinazzi S (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211: 609–613.

Gordon-Weeks R, Steele SH & Leigh RA (1996) The role of magnesium, pyrophosphate, and their complexes as substrates and activators of the vacuolar H+-pumping inorganic pyrophosphatase (studies using ligand protection from covalent inhibitors). Plant Physiology 111: 195-202.

Jahn T, Fuglsang AT, Olosson A, Brüntrup IM, Collinge DB, Volkmann D, Sommarin M, Palmgren MG & Larsson C (1997) The 14-3-3 protein interacts directly with the c-terminal region of the plant plasma membrane H+-ATPase. The Plant Cell 9: 1805-1814.

Kasai M, Nakamura N, Kudo N, Sato H, Maeshima M & Sawada S (1998) The activity of the root vacuolar H+-pyrophosphatase in rye plants grown under conditions deficient in mineral nutrients. Plant Cell Physiology 39: 890-894.

Kim Y, Kim EJ & Rea PA (1994) Isolation and characterization of cDNAs encoding the vacuolar H+-pyrophosphatase of Beta vulgaris. Plant Physiology 106: 375-382.

Krajinski F, Hause B, Gianinazzi-Pearson V & Franken P (2002) Mtha1, a plasma membrane H+-ATPase gene from Medicago truncatula, shows arbuscule-specific induced expression in mycorrhizal tissue. Plant Biology 4: 754–761.

Leigh RA, Pope AJ, Jennings IR & Sanders D (1992) Kinetics of the vacuolar H+-pyrophosphatase from higher plants. The role of magnesium, pyrophosphate and their complexes as substrates, activators and inhibitors. Plant Physiology 100: 1698-1705.

Lerchl J, König S, Zrenner R & Sonnewald U (1995) Molecular cloning, characterization and expression analysis of isoforms encoding tonoplast-bound proton-translocating inorganic pyrophosphatase in tobacco. Plant Molecular Biology 29: 833-840.

Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek B, Murphy AS, Gilroy S & Gaxiola R (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310: 121-125.

Long AR, Williams LE, Nelson SJ & Hall JL (1995) Localization of membrane pyrophosphatase activity in Ricinus communis seedlings. Journal of Plant Physiology 146: 629-638.

Maeshima M & Yoshida S (1989) Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. Journal of Biological Chemistry 264: 20068-20073.

Maeshima M (1990) Development of vacuolar membranes during elongation of cells in mung bean hypocotyls. Plant Cell Physiology 31: 311-317.

Maeshima M (1991) H(+)-translocating inorganic pyrophosphatase of plant vacuoles. Inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. European Journal of Biochemical 196: 11-17.

Maeshima M (2000) vacuolar H+-pyrophosphatase. Biochimica et Biophysica Acta 1465: 37-51.

Maruyama C, Tanaka Y, Mitsuda NT, Takeyasu K, Yoshida M & Sato MH (1998) Structural studies of the vacuolar H+- pyrophosphatase: sequence analysis and identification of the residues modified by fluorescent cyclohexylcarbodiimide and maleimide. Plant Cell Physiology 39: 1045-1053.

Moriau L, Michelet B, Bogaerts P, Lmabert L, Michel A, Oufattole M & Boutry M (1999) Expression analysis of two gene subfamilies encoding the plasma membrane H+-ATPase in Nicotiana plumbaginifolia reveals the major transport functions of this enzyme. The Plant Journal 19: 31-41.

Morsomme P & Boutry M (1999) The plant mebrana H+- ATPase: structure, function and regulation. Biochimica et Biophysica Acta 1465: 1-16.

Murphy PJ, Langridge P, Smith SE (1996) Cloning plant genes differentially expressed during colonization of roots of Hordeum vulgare by the vesicular–arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist 135: 291–301.

Nakanishi Y & Maeshima M (1998) Molecular cloning of vacuolar H+- pyrophosphatase and its developmental expression in growing hypocotyl of Mung Bean. Plant Phisiology 116: 598-597.

Nore BF, Sakai-Nore Y, Maeshima M, Baltscheffsky M & Nyrén P (1991) Immunological cross-reactivity between proton- pumping inorganic pyrophosphatases of widely phylogenic separated species. Biochemical and Biophysical Research Communications 181: 962-967.

Obermeyer G, Sommer A & Bentrup F-W (1996) Potassium and voltage dependence of the inorganic pyrophosphatase of intact vacuoles from Chenopodium rubrum. Biochimica et Biophysica Acta 1284: 203-212.

Palmgren MG, Sommarin M, Serrano R & Larsson C (1991) Identification of an autoinhibitory domain in the c-terminal region of the plant plasma membrane H+-ATPase. Journal of Biological Chemistry 266: 20470-20475.

Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD & Gaxiola RA (2005) Up-regulation of H+-pyrophosphatase (H+-Ppase) as a strategy to engineer drought-resistant crop plants. Proceedings of the National Acaddemy of Sciences USA 102: 18830-18835.

Pérez-Castiñeira JR, López-Marquéz RL, Villalba JM, Losada M & Serrano A (2002) Functional complementation of yeast cytosolic phyrophosphatase by bacterial and plant H+-translocating pyrophosphatases. Proceedings of the National Acaddemy of Sciences USA 99: 15914-15919.

Ramos AC, Martins MA & Façanha RA (2005) Atividade atpásica e pirofosfatásica em microcromossomos de raízes de milho colonizadas com fungos micorrízicos arbusculares. Revista Brasileira de Ciência do Solo 29: 207-213

Rea PA & Poole RJ (1985) Proton-translocating inorganic pyrophosphatase in Red Beet (Beta vulgaris L.) Tonoplast Vesicles. Plant Physiology 77: 46-52

Rea PA & Poole RJ. (2000) Vacuolar H+-translocating pyrophosphatase Annual Review of Plant Physiology and Plant Molecular Biology 44: 157-180.

Rea PA, Kim Y, Sarafian V, Poole RJ, Davies JM & Sanders D (1992) Vacuolar H+-translocating pyrophosphatases: a new category of ion translocase. Trends in Biochemical Sciences 17: 348-353.

Robinson DG, Hoppenrath M, Oberbeck K, Luykx P & Ratajczak R (1998) Localization of pyrophosphatase and V-ATPase in Chlamydomonas reinhardtii. Botanica Acta 111: 108-122.

Sakakibara Y, Kobayashi H & Kasamo K (1996) Solation and characterization of cDNAs encoding vacuolar H+- pyrophosphatase isoforms from rice (Oryza sativa L.). Plant Molecular Biology 31: 1029-1038.

Sarafian V & Poole RJ (1989) Purification of an H+-translocating inorganic pyrophosphatase from vacuole membranes of Red Beet. Plant Physiology 91: 34-38.

Sarafian V, Kim Y, Poole RJ & Rea PA (1992) Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proceedings of the Natural Academy Sciences USA 89: 1775-1779.

Sato MH, Kasahara M, Ishii N, Homareda H, Matsui H, Yoshida M (1994) Purified vacuolar inorganic pyrophosphatase consisting of a 75-kDa polypeptide can pump H+ into recontituted proteoliposomes. Journal of Biological Chemistry 269: 6725-6758.

Scott DA, Souza W de, Benchimol M, Zhong L, Lu HG, Moreno SNJ & Docampo R (1998) Presence of a plant-like proton pumping pyrophosphatase in acidocalcisomes of Trypanosoma cruzi. Journal of Biological Chemistry 273: 22151-22158.

Sze H, Li X & Palmgren MG (1999) Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. The Plant Cell 11: 677-689.

Taiz L & Zeiger E (2002) Plant Physiology. 3ed. Sinauer.

Taiz L (1992) The plant vacuole. Journal of Experimental Biology 172: 113-122.

Takasu A, Nakanishi Y, Yamauchi T & Maeshima M (1997) Analysis of the substrate binding site and carboxyl terminal region of vacuolar H+-pyrophosphatase of Mung Bean with peptide antibodies Journal of Biochemistry 122: 883-889.

Tanaka Y, Chiba K, Maeda M & Maeshima M (1993) Molecular cloning of cDNA for vacuolar membrane proton-translocating inorganic pyrophosphatase in Hordeum vulgare. Biochemistry and Biophysics Research Communication 190: 1110-1114.

Zandonadi DB, Canellas LP & Façanha AR (2007) Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps Planta 225:1583-1595.

Zhen RG, Baykov AA, Bakuleva NP & Rea PA (1994) Aminomethylenediphosphonate: a potent type-specific inhibitor of both plant and phototrophic bacterial H+- pyrophosphatases. Plant Physiology 104: 153-159.

Cómo citar

Siqueira, A. F., Cruz, Z. M., Queiroz, S., Rocha, O. J., Soares, D. N., & Ramos, A. C. (2008). Desvendando a H+-Pirofosfatase vacuolar e o seu papel na biotecnologia vegetal. Natureza Online, 6(1), 9–15. Recuperado a partir de https://naturezaonline.com.br/revista/article/view/414

Artículos más leídos del mismo autor/a

<< < 1 2