Biochemistry characterization of proteins defense against oxidative stress in plants and their biosynthetic pathways of secondary metabolites
Abstract
The purpose of this present review is to characterize the new proteomic approaches in the study of the regulatory mechanisms of defense against oxidative stress in plants. Plant and pathogens establish relationships, resulting in biochemical information exchanges. Accordingly, certain cellular compartments develop various defense mechanisms. The first mechanism is pre-existing, using structural and/or preformed antimicrobial compounds. The second are induced as hipersensitive response (HR), accumulation of secondary metabolites by phytoalexins, the synthesis of signaling molecules, induction of hydrolytic enzymes, lignin deposition in cell wall, biosynthesis of proteins related to pathogenesis (PRs) and generation of reactive oxygen species (ROS). The main ROS are hydrogen peroxide (H2O2), superoxide ions (O2-) and hydroxyl radicals (•OH). These chemicals act as direct toxic action against pathogens. However when in excess, they can lead to oxidation of proteins, nucleic acids and unsaturated fatty acids. To avoid such damage, plants activate efficient antioxidant systems as the enzymes superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11). Here we unraveled several proteins defense plant cell wall as well as the antimicrobial activity. It is supported in this work, that jasmonic acid (JA) substantially induces plant defense. In addition, we propose models for the conversion route of linolenic acid in JA. We approach in a simplified, but consistent way, the divisions of secondary metabolites as well as its ecological and agricultural attributes. Finally, we present a schematic model summarizing the main biosynthetic routes of secondary metabolites and their interrelations with the primary metabolism.
Keywords:
Downloads
References
Agati G, Azzarello E, Pollastri S, Tattin M (2012) Flavonoids as antioxidants in plants: Location and functional significance. Plant Science 196: 67-76.
Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406: 512–515.
Armelle T, Mbaveng G, Zhao Q, Kuete V (2014) Harmful and Protective Effects of Phenolic Compounds from African Medicinal Plants. Toxicological Survey of African Medicinal Plants 33: 577-609.
Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Journal Science 82: 1227-1238.
Blée E, Schuber F (1992a) Occurrence of fatty acid epoxide hydrolases in soybean: purification and characterization of the soluble form Glycine max L. Biochemical Journal 282: 711-714.
Blée E, Schuber F (1992b) Region and enantioselectivity of soybean fatty acid epoxide hydrolase Glycine max L. Biology Chemical 267: 11881-11887.
Bowless DJ (1990a) Signal in the wounded plant. Nature 343: 314-315.
Breusegem F, Vranova E, Dat JF, Inze D (2001) The role active oxygen species in plant signal transduction. Plant Science 161: 405-414.
Cenzano A, Abdala G, Hause B (2007) Cytochemical immuno-localization of allene oxide cyclase, a jasmonic acid biosynthetic enzyme, in developing potato stolons. Journal of Plant Physiology 164: 1449- 1456.
Collinge DB (2009) Cell wall appositions: the first line of defence. Journal of Experimental Botany 60: 351-352.
Coninck B, Timmermans P, Vos C, Bruno PA, Kazan K (2014) What lies beneath: belowground defense strategies in plants. Cell Press 11: 1- 11.
Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences 101: 1781-1785.
Fong-Chin Huang F, Wilfried Schwab S (2013) Transformation of terpenes into fine chemicals. European Journal of Lipid Science and Technology 115: 3-8.
Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in physiological context. Plant Cell Enviromental 28: 1056-1071.
Garcia-Breijo FJ, Garro R, Conejero V (1990) C7 (P32) and C6 (P34) PR proteins induced in tomato leaves by Citrus exocortis viroid infection are chitinases. Physiological and Molecular Plant Pathology 36: 249-260.
Giannopolitis CN, Ries SK (1977) Superoxide dismutases. Occurrence in higher plants. Plant Physiol 59: 309-314.
Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.) Plant Science 182: 112-120.
Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48: 909-930.
Guggisberg A, Hesse M (2003) Alkaloids in plant. Sciences and Chemical Engineering Encyclopedia of Physical Science and Technology 22: 477-493.
Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiology Plant 31: 427-436.
Jones JDG, Dangl JL (2006) The plant immune system. Nature 444: 323- 329.
Kiyosue T, Beetham JK, Pinot F, Hammock BD Yamaguchi-Shinozaki K (1994) Isolation and characterization of cDNA that encodes a soluble epoxide hydrolase from Arabidopsis thaliana L. Journal Plant 6: 259-269.
Kolomiets MV, Yan Y, Borrego E (2013) Jasmonate Biosynthesis, Perception and Function in Plant Development and Stress Responses. Intech Journal 06: 394-441.
Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology 50, 47–65.
Lichtenthaler HK (2009) Biosynthesis and Accumulation of Isoprenoid Carotenoids and Chlorophylls and Emission of Isoprene by Leaf Chloroplasts. Bulletin of the Georgian National Academy of Sciences 3: 81-94.
Linthorst HJM (1991) Pathoneses-related proteins of plant. Critcal Reviews in Plant Sciences 10: 123-150.
Loqué D, Eudes A, Liang Y, Mitra P (2014) Lignin bioengineering in plant. Current Opinion in Biotechnology 26: 189-198.
Maldonado MT, Hughes MP, Rue EL, Wells ML (2002) The effect of Fe and Cu on growth and domoic acid production by (Pseudo-nitzschia multiseries) and (Pseudo-nitzschia australis). Limnology and Oceanography 47: 515-526.
Mansour MMF (2000) Nitrogen Containing compounds and adaptation of plants to salinity stress. Biologia Plantarum 43: 491- 500.
Maucher H, Hause B, Feussner I, Ziegler J, Wasternack C (2000) The allene oxide synthases of barley (Hordeum vulgare cv. Salome)-tissue specific regulation in seedling development PR. Plant Journal 21: 199–213.
Metraux JP, Signer H, Ryals J, Wards E, Benz MW, Gaudin J, Raschdorf K, Shid E, Blum W, Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250: 1004-1006.
Michiels K, Van Damme EJM, Smagghe G (2010) Plant-insect interactions: Wat can we learn from plant lections? Archives of Insect Bichemistry and Physiogy 73: 193-212.
Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Science 7: 405-410.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sciences 9: 490–498.
Morisseau C, Beetham JK, Pinot F, Debernard S, Newman JW, Hammock BD (2000) Cress and potato soluble epoxide hydrolases: Purification, biochemical characterization, and comparison to mammalian enzymes. Archives of Biochemistry and Biophysics 378: 321-332.
Nahakpam S, Shah K (2012) Expression of key antioxidant enzymes under combined effect of heat and cadmium toxicity in growing rice seedlings. Plant Growth Regulation 63: 23-35.
Newman M, Thompson C, Roberts AP (2005) Helping practitioners understand the contribution of qualitative research to evidence-based practice. Journal Evidence Nursing 9: 4-7.
Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Plant Physiology 49: 249-279.
Pastsart U, Boever MD, Claeys E, Smet SD (2013) Effect of muscle and post-mortem rate of pH and temperature fall on antioxidant enzyme activities in beef. Meat Science 93: 681-686.
Qu AL, Ding YF, Jiang Q, Zhu C (2013) Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications 432: 203-207.
Rosas-Rodríguez JA, Valenzuela-Soto EM (2010) Enzymes involved in osmolyte synthesis: How does oxidative stress affect osmoregulation in renal cells. Life Sciences 87: 515-520.
Sanchez S, Demain AL (2011) Secondary Metabolites plant. Elsevier Journal 12: 155-167.
Shadmani N, Ahmad SH, Saari N, Ding P, Tajidin NE (2015) Chilling injury incidence and antioxidant enzyme activities of (Carica papaya L.) Frangi’ as influenced by postharvest hot water treatmentand storage temperature. Postharvest Biology and Technology 99: 114- 119.
Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal Botany 33: 1-26.
Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 34: 1-26.
Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology 3: 217-223.
Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress. New Tools for Reactive Oxygen Species Reseach 1. The International Journal on the Biology of Stress 141: 367-372.
Stinzi A, Heitz T, Prasad V, Wiedemann S, Geoffroy P, Legrand M, Friting B (1993) Plant PR proteins and their role in defense against pathogens. Biochimie 75: 687-706.
Teng Y, Zou L, Huang M, Zong W (2014) Molecular interaction of 2- mercaptobenzimidazole with catalase reveals a potentially toxic mechanism of the inhibitor. Journal of Photochemistry and Photobiology Biology 141: 241-246.
Tománková K, Luhová L, Petricalský M, Pec P, Lebeda A (2006) Biochemical aspects of reactive oxygen formation in the interaction between Lycopersicon spp. and Oidium neolycopersici. Physiological and Molecular Plant Pathology 68: 22-32.
Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiology 141: 373-378.
van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289: 295-297.
Van Loon LC (1984) Regulations of Pathogenesis and Symptom Expression in Diseased Plant by Ethylene. In: Fuches Y; Chalutz E. (Eds). Ethylene: biochemical, physiological and applied aspects. Netherlansds.
Van Loon LC, Geritsen YAM (1989) Protease activy and PR proteins in virus-infected samsun NN tobacco leaves. Elsevier Scientific Publishers 18: 25-32.
Vandenborre G, Smagghe G, Van Damme EJ (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72: 1538-1550.
Williams DJ, Pun S, Chaliha M, Scheelings P, O’Hare T (2013) An unusual combination in papaya (Carica papaya): The good (glucosinolates) and the bad (cyanogenic glycosides). Journal of Food Composition and Analysis 29: 82-86.
Xu Q, Cai L, Zhao H, Tang J, Shen Y, Hu X, Zeng H (2015) Forchlorfenuron detection based on its inhibitory effect towards catalase immobilized on boron nitride substrate. Biosensors and Bioelectronics 63: 294-300.
Youssef, MM, Azooz MM (2013) Biochemical studies on the effects of zinc and lead on oxidative stress, antioxidant enzymes and lipid peroxidation in Okra Hibiscus esculentus cv. Hassawi. Science International 1: 12-16.
Zhang Y (2013) Ascorbic Acid in Plants: Springer Briefs in Plant Science 22: 365-387.
Zhu JK (2002) Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53:247-273.
How to Cite
License
Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.