Hipóteses evolutivas sobre a origem e manutenção dos dormitórios comunais de Heliconius erato (Lepidoptera, Nymphalidae)

Autores

  • Fabíola B Endringer Escola Superior São Francisco de Assis
  • Péricles R Silva Escola Superior São Francisco de Assis
  • Leonardo V Lutz Escola Superior São Francisco de Assis

Resumo

A borboleta Heliconius erato forma dormitórios comunais, os quais se constituem em agregações noturnas e circadianas formadas, geralmente, nos mesmos locais e compostas pelos mesmos indivíduos. Apesar desta espécie ser uma das mais bem conhecidas, especialmente no que se refere a aspectos genéticos, ecológicos e evolutivos, seu comportamento gregário ainda permanece não entendido, do ponto de vista adaptativo. Neste trabalho, são revisadas as principais hipóteses que explicam a construção e manutenção evolutivas de agregações. A adequação de cada uma destas hipóteses à formação dos dormitórios comunais de H. erato foi avaliada comparando–se suas premissas funcionais a aspectos biológicos básicos da espécie. Esta avaliação, ao mesmo tempo que permite a exclusão da maioria destas hipóteses, sugere que a explicação mais provável possa ser um misto de centro de informação e de minimização da predação, embora o pleno funcionamento desta (bem como a refutação das demais), em condições naturais, ainda depender de observações diretas e testes experimentais.

Downloads

Não há dados estatísticos.

Referências

Adams AAY (2003) Communal roosting in insects. www.colostate.edu/Depts/Entomology/courses/en507/papers_1999/yackel.htm. Acessado em 18/11/2003.

Alexander RD (1974) The evolution of social behaviour. Annual Review of Ecology and Systematics 5: 325–383.

Barta Z & Giraldeau LA (2001) Breeding colonies as information centers: a reappraisal of information-based hypoteses using the producer-scrounger game. Behavorial Ecology 12: 121–127.

Bayer RD (1982) How important are bird colonies as information centers? Auk 99: 31–40.

Benson WW (1971) Evidence for the ecology of Ithomiinae and Heliconiinae in Costa Rica. San Jose, Costa Rica: Organization for Tropical Studies.

Beuchamp G (1999) A comparative study of breeding traits in colonial birds. Evolutionary Ecology Research 1: 251–260.

Boggs CL & Gilbert LE (1979) Male contribution to egg production: first evidence for transfer of nutrients of mating in butterflies. Science 206: 83–84.

Boyden TC (1976) Butterfly palatability and mimicry: experiments withe Ameiva lizards. Evolution 30: 73–81.

Brower LP, Brower JVZ & Collins CT (1963) Experimental studies of mimicry. 7. Relative palatability and mullerian mimicry among neotropical butterfies of the subfamily Heliconiinae. Zoologica 48: 65–84.

Brown KS, Jr & Mielke OHH (1972) The Heliconians of Brazil (Lepidoptera: Nymphalidae). Part II. Introduction and general comments, with a supplementary revision of the tribe. Zoologica 57: 1–40.

Brown KS, Jr (1975) Geographical patterns of evolution in Neotropical Forest. Systematics and derivation of known and new Heliconiini (Nymphalidae: Nymphalinae). Journal of Entomology 44: 201–242.

Brown KS, Jr (1981) The biology of Heliconius and related genera. Annual Review of Entomology 26: 427–456.

Caccamise DF & Morrison DW (1986) Avian communal roosting: implications of diurnal activity centers. American Naturalist 128: 191–198.

Carpenter GDH (1933) Gregarious roosting habitats of aposematic butterflies. Proceedings of the Royal Entomological Society of London (B) 8: 110–111.

Chai P (1986) Field observations and feeding experiments on the responses of rufous-tailed jacamars (Galbula ruficauda) to free-flying butterflies in a tropical rainforest. Biological Journal of the Linnean Society 29: 161–189.

Crane J (1955) Imaginal behavior of a Trindad butterfly, Heliconius erato hydara Hewitson, with special reference to the social use of color. Zoologica 40: 167–196.

Crane J (1957) Imaginal behavior in butterflies of the family Heliconiidae: changing social patterns and irrelevant actions. Zoologica 42: 135–145.

Devries JP (1987) Synchronous nocturnal activity and gregarious roosting in the neotropical skipper butterfly Celaenorrhinus fritzgaertneri (Lepidoptera: Hespeeriidae). Zoological Journal of the Linnean Society 59: 30–37.

Dunlap-Pianka H, Boggs CL & Gilbert LE (1977) Ovarian dynamics in Heliconiine butterflies: programmed senescence versus eternal youth. Science 197: 487–490.

Ehrlich PR & Raven PH (1965) Butterflies ans plants: a study in coevolution. Evolution 18: 586–608.

Ehrlich PR & Gilbert LE (1973) Population structure and dynamics of the tropical butterfly Heliconius ethilla. Biotropica 5: 69–82.

Emlen ST & Demong NJ (1975) Adaptive significance of synchronized breeding in a colonial bird: a new hypothesis. Science 188: 1029–

Enquist M & Leimar O (1993) The evolution of cooperation in mobile organisms. Animal Behaviour 45: 747–757.

Evans RM (1982) Foraging flock recruitment at a black–billed gull colony: implications for the information center hypothesis. Auk 99: 24–30.

Gilbert LE (1972) Pollen feeding and reproductivd biology of Heliconious butterflies. Proceedings of the National Academy of Science USA 69: 1403–1407.

Gilbert LE (1975) Ecological consequences of a coevolved mutualism between butterflies and plants. In: Gilbert LE & Raven PH (eds.)

Coevolution of animals and plants. Austin: University of Texas Press, pp 210–240.

Gilbert LE (1976) Postmating female odour in Heliconius butterflies: a male contributed antiaphrodisiac? Science 193: 419–420.

Gilbert LE & Singer MC (1973) Dispersal and gene flow in a butterfly species. American Naturalist 107: 58–72.

Grether GF & Switzer PV (2000a) Characteristics and possible functions of traditional night roosting aggregations in rubyspot damselflies. Behaviour 137: 401–416.

Grether GF & Switzer PV (2000b) Mechanisms for the formation and maintenance of traditional night roost aggregations in a territorial damselfly. Animal Behaviour 60: 569–579.

Hinde RA & Fisher J (1951) Further observations on the opening of milk bottles by birds. British Birds 44: 393–396.

Hoogland JL & Sherman PW (1976) Advantages and disadvantages of bank swallow (Riparia riparia) coloniality. Ecological Monographies 46: 33–58.

Ilse D (1937) New observations on response to colours in egg-laying butterflies. Nature 140: 544.

Jones FM (1930) The sleeping Heliconius of Florida. Natural History 30: 635–634.

Krebs JR & Inman (1994) Learning and foraging: individuals, groups and populations. In: Real LA (ed.) Behavioral mechanisms in evolutionary ecology. Chicago: University of Chicago Press, pp 46–65.

Lack D (1968) Ecological adaptations for breeding in birds. London: Methuen.

Larger H & Struwe G (1972) Spectral absorbance by screening pigments granules in the compound eye of butterflies (Heliconius). Journal of Comparative Physiology 79: 203–212.

Lee PC (1994) Social structure and evolution. In: Slater PJB & Halliday TR (eds.) Behavioral mechanisms in evolutionary ecology. Cambridge: Cambridge University Press, pp 266–303.

Lutz LV (2002) Contextos fenotípicos multifuncionais: influência do padrão de coloração de uma borboleta impalatável (Heliconius erato phyllis) sobre seu sucesso de acasalamento, ritmo diário de atividades e sobrevivência em campo. Tese de Doutorado. PPG Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFGRS), Porto Alegre, RS.

Mallet J (1984) Population structure and evolution in Heliconius butterflies. Ph. D. Thesis, University of Texas at Austin, Austin.

Mallet J & Gilbert LE (1995) Why are there so many mimicry rings? Correlations between habitat, behaviour and mimicry in Heliconius butterflies. Biological Journal of the Linnean Society 55: 159–180.

Mallet J, Longino JT, Murawski D, Murawski A & De Gamboa AS (1987) Handling effects on Heliconius: where do all the butterflies go? Journal of Animal Ecology 56: 377–386.

Mallet J & Jackson DA (1980) The ecology and social behavior of the Neotropical butterfly Heliconius xanthocles Bates in Colombia. Zoological Journal of the Linnean Society 70: 1–13.

Mallet J & Singer MC (1987) Individual selection, kin selection, and the shifting balance in the evolution of warning colours: the evidence from butterflies. Biological Journal of the Linnean Society 32: 337–350.

Marsh N & Rothschild M (1974) Aposematic and cryptic Lepidoptera tested on the mouse. Journal of Zoology 174: 89–122.

Maynard & Smith (1982) Evolution and the theory of games. Cambridge: Cambridge University Press.

Mock DW, Lamey TC & Thonpson DBA (1988) Falsifiability and the information center hypotesis. Ornis Scandinavica 19: 231–248.

Nahrstedt A & Davis RH (1981) The occurrence of the cyanoglucosides, linamarin and lotoaustralin, in Acraea and Heliconius butterflies. Comparative Biochemistry and Physiology 68B: 575–577.

Richner H & Danchin E (2001) Viable and unviable hypothesis for the evolution of raven roosts. Animal Behaviour 61: F7–F11.

Richner H & Heeb P (1995a) Communal life: honest signaling and the recruitment center hypotesis. Behavioral Ecology 7: 115–119.

Richner H & Heeb P (1995b) Is the information center hypoteses a flop? Advances in the Study of Behaviour 24: 1–45.

Richner H & Heeb P (1996) Communal life: honest signaling and the recruitment center hypothesis. Behavioral Ecology 7: 115–118.

Richner H & Marclay C (1991) Evolution of avian roosting behaviour: a test of the information centre hypothesis and of a critical assumption. Animal Behaviour 41: 433–438.

Slater PJB (1994) Kinship and altruism. In: Slater PJB & Halliday TR (eds.) Behavioral and evolution. Cambridge: Cambridge University Press, pp 193–222.

Smiley J (1978) Plant chemistry and the evolution of host specificity: New evidence from Heliconius and Passiflora. Science 201: 745–747.

Swihart CA & Swihart SL (1970) Colour selection and learned feeding preferences in the butterfly, Heliconius charitonius Linn. Animal Behaviour 18: 60–64.

Swihart CA (1971) Colour discrimination by the butterfly, Heliconius charitonius Linn. Animal Behaviour 19: 156–164.

Trivers RL (1971) The evolution of reciprocal altruism. Quaterly Review of Biology 46: 35–37.

Turner JRG (1971) Experiments on the demography of tropical butterflies. II Longevity and home–range behaviour in Heliconius erato. Biotropica 3: 21–31.

Turner JRG (1975) Communal roosting in relation to warning colour in two heliconiine butterfflies (Nymphalidae). Journal of the Lepidopterists´ Society 29: 221–226.

Turner JRG (1981) Adaptation and evolution in Heliconius: A defense of neodarwinism. Annual Review of Ecology and Systematics 12: 99–121.

Tuskes PM & Brower LP (1978) Overwintering ecology of the monarch butterfly, Danaus plexippus L. in California. Ecological Entomology 3: 141–153.

Wagner R (1993) The persuit of extra–pair copulations by female birds: a new hypothesis of colony formation. Journal of Theoretical Biology 163: 333–346.

Ward P & Zahavi A (1973) The importance of certain assemblages of birds as “information centres” for food finding. Ibis 115: 517–534.

Weatherhead P (1983) Two principal strategies in avian communal roosts. American Naturalist 121: 237–243.

Yom–Tov Y, Imber A & Otterman J (1976) The microclimate of winter roosts of the starling Sturnus vulgaris. Ibis 119: 366–368.

Young AM (1978) A communal roosting of the buterfly Heliconius charitonius L. in Costa Rican premontane tropical wet florest (Lepidoptera: Nymphalidae). Entomological News 89: 235–243.

Publicado:

2004-01-01

Downloads

Como Citar

Endringer, F. B., Silva, P. R., & Lutz, L. V. (2004). Hipóteses evolutivas sobre a origem e manutenção dos dormitórios comunais de Heliconius erato (Lepidoptera, Nymphalidae). Natureza Online, 2(1), 1–9. Recuperado de https://naturezaonline.com.br/revista/article/view/68