Photochemical activity of Cattleya harrisoniana (Orchidaceae) after sunfleck exposure

Autores/as

  • Jadson Bonini Zampirollo Universidade Federal do Espírito Santo
  • Clodoaldo Leites Pinheiro Embrapa Pecuária Sul
  • Diolina Moura Silva Universidade Federal do Espírito Santo
  • Antelmo Ralph Falqueto Universidade Federal do Espírito Santo

Resumen

Parameters of chlorophyll (Chl) a fluorescence were investigated in orchid plants (Cattleya harrisoniana Batem Ex. Lindl.) submitted to high light during 35 minutes, simulating a sunfleck. Reductions in Fv’/Fm’, ΦPSII and qP after high light were attributable to non-radiative energy dissipation, as indicated by the increase of 1-Fv’/Fm’ values, which contributed to a down regulation of photosystem II (PSII) avoiding the overreduction of the primary electron acceptor, quinone A (QA). Our results also indicated the occurrence of dynamic photoinhibition, evidenced through of recovery back to control values of all photosynthetic parameters after high light.

Palabras clave:

Light, Chlorophyll a fluorescence, Non-radiative energy dissipation, Ecophysiology

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jadson Bonini Zampirollo, Universidade Federal do Espírito Santo

Departamento de Ciências Agrárias e Biológicas, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo.

Diolina Moura Silva, Universidade Federal do Espírito Santo

Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo.

Antelmo Ralph Falqueto, Universidade Federal do Espírito Santo

Departamento de Ciências Agrárias e Biológicas, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo.

Citas

Adams III WW, Miller O, Cohu CM, Demmig-A- dams B (2013) May photoinhibition be a consequen- ce, rather than a cause, of limited plant productivity? Photosynthesis Research 117: 31-44.

Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Pa- akkarinen V, Saleem A, Battchikova N, Rintamäki E (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. Journal of Experimental Botany 56: 347-356.

Augusti A, Scartazza A, Navari-Izzo F, Sgherri CLM, Stevanovic B, Brugnoli E (2001) Photosystem II photochemical efficiency, zeaxanthin and antioxi- dant contents in the poikilohydric Ramonda serbica during dehydration and rehydration Photosynthesis Research 67: 79-88.

Chazdon RL, Pearcy RW (1991) The importance of sunflecks for forest understory plants. Bioscience 41: 760-766.

Dias DP, Marenco RA (2006) Photoinhibition of photosynthesis in Minquartia guianensis and Swietenia macrophylla inferred by monitoring the initial fluo- rescence. Photosynthetica 44: 235-240.

Essemine J, Govindachary S, Joly D, Ammar S, Bou- zid S, Carpentier R (2012) Effect of moderate and high light on photosystem II function in Arabidop- sis thaliana depleted in digalactosyl-diacylglycerol. Biochimica et Biophysica Acta 1817: 1367-1373.

Genty B, Briantais JM, Baker NR (1989) The rela- tionship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluo- rescence. Biochimica et Biophysica Acta 990: 87-92.

Gholamia M, Rahemib M, Kholdebarinc B, Raste- garb S (2012) Biochemical responses in leaves of four fig cultivars subjected to water stress and reco- very. Scientia Horticulturae 148: 109-117.

Gonçalves JFC; Silva CE; Guimarães DG; Bernardes RJ (2010) Análise dos transientes da fluorescência da clorofila a de plantas jovens de Carapa guianensis e de Dipteryx odorata submetidas a dois ambientes de luz. Acta Botanica Brasilica 40: 89-98.

Hanachi S, Van Labeke MC, Mehouachi T (2014) Application of chlorophyll fluorescence to screen eggplant (Solanum melongena L.) cultivars for salt tolerance. Photosynthetica 52: 57-62.

Jiao D, Ji BH, Li X (2003) Characteristics of chloro- phyll fluorescence and membrane-lipid peroxidation during senescence of flag leaf in different cultivars of rice. Photosynthetica 41: 33-41.

Krause GH, Weis E (1991) Chlorophyll fluorescen- ce and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology 42: 313-349.

Kursar TA, Coley PD (1993) Photosynthetic induc- tion times in shade-tolerant and short-lived leaves. Oecologia 93: 165-170.

Moradi F, Ismail AM (2007) Responses of photosyn- thesis, chlorophyll fluorescence and ROS scavenging system to salt stress during seedling and reproductive stages in rice. Annals of Botany 99: 1161-1173.

Müller P, Li XP, Niyogi KK (2001) Non-photoche- mical quenching. A response to excess light energy. Plant Physiology 125: 1558-1566.

Murata N, Takahashi S, Nishiyama Y, Allakhver- diev SI (2007) Photoinhibition of photosystem II un- der environmental stress. Biochimica et Biophysica Acta 1767: 414-421.

Portes MT, Alves TH, Souza GM (2006) Water de- ficit affects photosynthetic induction in Bauhinia forficate Link (Fabaceae) and Esenbeckia leiocarpa Engl. (Rutaceae) growing in understory and gap con- ditions. Bazilian Journal of Plant Physiology 18: 491-502.

Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool for the assessment of photosynthetic activity. Aquatic Botany 82: 222-237.

Štroch M, Špunda V, Kurasová I (2004) Non-radia- tive dissipation of absorbed excitation energy within photosynthetic apparatus of higher plants. Photosyn- thetica 42: 323-337.

Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science 16: 53-60.

Van Herdeen PDR, Swanepoel JW, Krüger GHJ (2007) Modulation of photosyntesis in two desert scrub species exhibiting C3-mode CO2 assimilation. Environmental and Experimental Botany 61: 124-136.

Wagner A, McGraw JB (2013) Sunfleck effects on physiology, growth, and local demography of Ameri- can ginseng (Panax quinquefolius L.). Forest Ecolo- gy and Management 291: 220-227.

Way DA, Pearcy, RW (2012) Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiology 32: 1066-1081.

Zribi L, Gharbi F, Rezgui F, Salwa R, Hassan N, Né- jib RM (2009) Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato Solanum lycopersicum (variety Rio Grande). Scientia Horti- culturae 120: 367-372.

Publicado:

2018-11-07

Descargas

Cómo citar

Zampirollo, J. B., Pinheiro, C. L., Silva, D. M., & Falqueto, A. R. (2018). Photochemical activity of Cattleya harrisoniana (Orchidaceae) after sunfleck exposure. Natureza Online, 16(3), 021–025. Recuperado a partir de https://naturezaonline.com.br/revista/article/view/464