Photochemical activity of Cattleya harrisoniana (Orchidaceae) after sunfleck exposure
Abstract
Parameters of chlorophyll (Chl) a fluorescence were investigated in orchid plants (Cattleya harrisoniana Batem Ex. Lindl.) submitted to high light during 35 minutes, simulating a sunfleck. Reductions in Fv’/Fm’, ΦPSII and qP after high light were attributable to non-radiative energy dissipation, as indicated by the increase of 1-Fv’/Fm’ values, which contributed to a down regulation of photosystem II (PSII) avoiding the overreduction of the primary electron acceptor, quinone A (QA). Our results also indicated the occurrence of dynamic photoinhibition, evidenced through of recovery back to control values of all photosynthetic parameters after high light.
Keywords:
Downloads
References
Adams III WW, Miller O, Cohu CM, Demmig-A- dams B (2013) May photoinhibition be a consequen- ce, rather than a cause, of limited plant productivity? Photosynthesis Research 117: 31-44.
Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Pa- akkarinen V, Saleem A, Battchikova N, Rintamäki E (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. Journal of Experimental Botany 56: 347-356.
Augusti A, Scartazza A, Navari-Izzo F, Sgherri CLM, Stevanovic B, Brugnoli E (2001) Photosystem II photochemical efficiency, zeaxanthin and antioxi- dant contents in the poikilohydric Ramonda serbica during dehydration and rehydration Photosynthesis Research 67: 79-88.
Chazdon RL, Pearcy RW (1991) The importance of sunflecks for forest understory plants. Bioscience 41: 760-766.
Dias DP, Marenco RA (2006) Photoinhibition of photosynthesis in Minquartia guianensis and Swietenia macrophylla inferred by monitoring the initial fluo- rescence. Photosynthetica 44: 235-240.
Essemine J, Govindachary S, Joly D, Ammar S, Bou- zid S, Carpentier R (2012) Effect of moderate and high light on photosystem II function in Arabidop- sis thaliana depleted in digalactosyl-diacylglycerol. Biochimica et Biophysica Acta 1817: 1367-1373.
Genty B, Briantais JM, Baker NR (1989) The rela- tionship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluo- rescence. Biochimica et Biophysica Acta 990: 87-92.
Gholamia M, Rahemib M, Kholdebarinc B, Raste- garb S (2012) Biochemical responses in leaves of four fig cultivars subjected to water stress and reco- very. Scientia Horticulturae 148: 109-117.
Gonçalves JFC; Silva CE; Guimarães DG; Bernardes RJ (2010) Análise dos transientes da fluorescência da clorofila a de plantas jovens de Carapa guianensis e de Dipteryx odorata submetidas a dois ambientes de luz. Acta Botanica Brasilica 40: 89-98.
Hanachi S, Van Labeke MC, Mehouachi T (2014) Application of chlorophyll fluorescence to screen eggplant (Solanum melongena L.) cultivars for salt tolerance. Photosynthetica 52: 57-62.
Jiao D, Ji BH, Li X (2003) Characteristics of chloro- phyll fluorescence and membrane-lipid peroxidation during senescence of flag leaf in different cultivars of rice. Photosynthetica 41: 33-41.
Krause GH, Weis E (1991) Chlorophyll fluorescen- ce and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology 42: 313-349.
Kursar TA, Coley PD (1993) Photosynthetic induc- tion times in shade-tolerant and short-lived leaves. Oecologia 93: 165-170.
Moradi F, Ismail AM (2007) Responses of photosyn- thesis, chlorophyll fluorescence and ROS scavenging system to salt stress during seedling and reproductive stages in rice. Annals of Botany 99: 1161-1173.
Müller P, Li XP, Niyogi KK (2001) Non-photoche- mical quenching. A response to excess light energy. Plant Physiology 125: 1558-1566.
Murata N, Takahashi S, Nishiyama Y, Allakhver- diev SI (2007) Photoinhibition of photosystem II un- der environmental stress. Biochimica et Biophysica Acta 1767: 414-421.
Portes MT, Alves TH, Souza GM (2006) Water de- ficit affects photosynthetic induction in Bauhinia forficate Link (Fabaceae) and Esenbeckia leiocarpa Engl. (Rutaceae) growing in understory and gap con- ditions. Bazilian Journal of Plant Physiology 18: 491-502.
Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool for the assessment of photosynthetic activity. Aquatic Botany 82: 222-237.
Štroch M, Špunda V, Kurasová I (2004) Non-radia- tive dissipation of absorbed excitation energy within photosynthetic apparatus of higher plants. Photosyn- thetica 42: 323-337.
Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science 16: 53-60.
Van Herdeen PDR, Swanepoel JW, Krüger GHJ (2007) Modulation of photosyntesis in two desert scrub species exhibiting C3-mode CO2 assimilation. Environmental and Experimental Botany 61: 124-136.
Wagner A, McGraw JB (2013) Sunfleck effects on physiology, growth, and local demography of Ameri- can ginseng (Panax quinquefolius L.). Forest Ecolo- gy and Management 291: 220-227.
Way DA, Pearcy, RW (2012) Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiology 32: 1066-1081.
Zribi L, Gharbi F, Rezgui F, Salwa R, Hassan N, Né- jib RM (2009) Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato Solanum lycopersicum (variety Rio Grande). Scientia Horti- culturae 120: 367-372.
How to Cite
License
Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.