Toxicidade do alumínio e o potencial dos fungos ectomicorrízicos na biorremediação dos solos ácidos

Autores/as

  • Amanda A Bertolazi Universidade Estadual do Norte Fluminense
  • Josimara B Venancio Universidade Estadual do Norte Fluminense
  • Frederico F Figueira Universidade Vila Velha
  • Sávio B Souza Universidade Vila Velha
  • Júlia G Barcelos Universidade Vila Velha

Resumen

Desde a revolução industrial, impactos antropogênicos têm promovido uma grande liberação de metais no ambiente, e o solo, sendo a parte básica e mais essencial do sistema ecológico, está sendo altamente contaminado. A disposição de resíduos urbanos e industriais, emissões de automóveis, atividades mineradoras e aplicação de fertilizantes e pesticidas na agricultura, têm contribuído para uma acumulação contínua de metais no solo. Embora alguns metais sejam essenciais para plantas e animais, a maioria é tóxica em elevadas concentrações, e a preocupação com a extensão e gravidade da contaminação do solo que eles causam está crescendo. Em solos ácidos (pH<5.5) a toxicidade do metal alumínio (Al) é o fator primário de limitação na produtividade das culturas. Este elemento na sua forma trivalente (Al3+) parece ser a mais importante espécie de Al rizotóxico, e à medida que o pH do solo cai este cátion é liberado e solubilizado. O primeiro sintoma visível da toxicidade do alumínio é a inibição do crescimento radicular, porém, este metal pode entrar fácil e rapidamente no apoplasto reagindo com a parede e a membrana celular alterando as suas propriedades e destruindo suas funções fisiológicas e biológicas, causando distúrbios enzimáticos e distúrbios na síntese de DNA, exercendo posteriores efeitos tóxicos nas plantas. Uma alternativa para o crescimento das plantas em solos contaminados com metais tóxicos como o Al é a utilização de fungos micorrízicos. Estas associações de fungos com raízes de plantas consistem em uma simbiose mutualística, em que o fungo é beneficiado com carboidratos provenientes de fotossíntese e a planta beneficia-se com água e nutrientes absorvidos pelas hifas fúngicas, além da proteção fornecida pelas estruturas miceliais. Tal proteção pode oferecer resistência a patógenos do solo, a estresses abióticos como seca, ou ao acúmulo de elementos tóxicos como os metais. A efetividade de uma diversidade de associações entre fungos e plantas, em relação ao crescimento destas em substratos contendo metais, foi testada e comprovada para vários metais, sendo que esta remediação está relacionada a uma série de mecanismos extra e intracelulares, dos quais os fungos dispõem. Nesta revisão são descritas as respostas dos fungos ectomicorrízicos a toxicidade de metais com destaque para o alumínio.

Palabras clave:

micorriza, tolerância, metal, biorremediação e mecanismos

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Amanda A Bertolazi, Universidade Estadual do Norte Fluminense

Universidade Estadual do Norte Fluminense (UENF).

Josimara B Venancio, Universidade Estadual do Norte Fluminense

Universidade Estadual do Norte Fluminense (UENF).

Frederico F Figueira, Universidade Vila Velha

Universidade Vila Velha (UVV).

Sávio B Souza, Universidade Vila Velha

Universidade Vila Velha (UVV).

Júlia G Barcelos, Universidade Vila Velha

Universidade Vila Velha (UVV).

Citas

Adriansen K, Lelie DVD, Laere AV, Vangrosveld J, Colpaert JV (2003) A zinc-adapted fungus protects pines from zinc stress. New Phytologist 161: 549-555.

Ahn SJ, Rengel Z, Matsumoto H (2004) Aluminum-induced plasma membrane surface potential and H+-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum. New Phytologist 162: 71-79.

Ahn SJ, Sivaguru M, Osawa H, Chung GC, Matsumoto H (2001) Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiolog y 126: 1381-1390.

Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environmental and Experimental Botany 62: 153-159.

Alves JR, Souza O Podlech PAS, Giachini AJ, Oliveira VL (2001) Efeito de inoculante ectomicorrízico produzido por fermentação semi-sólida. Pesquisa Abropecuária Brasileira 36: 307-313.

Alves RMN (1997) Comportamento diferencial ao Al em solução nutritiva de cultivares de feijão (Phaseolus vulgaris L.), sensível e tolerante e das espécies florestais Cássia Verrugosa (Senna multijuga (L.C. Rich.)) e Ipê Mirin (Stenolobiun stans ( Jun.)). Dissertação de Mestrado. Curso de Pós-Graduação em Agronomia/ Fisiologia Vegetal, Universidade Federal de Lavras (UFLA), Lavras, MG.

Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal. Mycorrhiza 11: 3-42.

Baptista P, Tavares RM, Lino-Neto, T (2011) Signaling in ectomycorrhizal symbiosis establishment. Diversity and Biotechnolog y of Ectomycorrhizae Soil Biolog y 25: 157-175.

Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance. Environmental and Experimental Botany 48: 75-92.

Beguiristain T, Cote R, Rubini P, Jay-Allemand C, Lapeyrie F (1995) Hypaphorine accumulation in hyphae of the ectomycorrhizal fungus, Pisolithus tinctorius. Phytochemistry 40: 1089-1091.

Bellion M, Courbot MC, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. Federation of European Microbiological Societies Microbiolog y Letters 254: 173-181.

Bisinoti MC, Yabe MJS, Gimenez SMN (2004) Avaliação da influência de metais pesados no sistema aquático da bacia hidrográfica da cidade de Londrina PR. Revista Analítica 8: 22-27.

Blancaflor EB, Jones DL, Gilroy S (1998) Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiolog y 118: 159-172.

Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annual Review of Plant Physiolog y and Plant Molecular Biolog y 43: 83-116.

Chakravarty P, Unestam T (1987) Differential influence of ectomycorrhizae on plant growth and disease resistance in Pinus sylvestris seedlings. Journal of Phytopatholog y 120: 104-120.

Chang Y-C, Yamamoto Y, Matsumoto H (1999) Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminium and iron. Plant, Cell & Environment 22: 1009-1017.

Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212: 475-486.

Colpaert JV, Van Tichelen KK, Van Assche JA, Laere AV (1999) Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedlings. New Phytologist 143: 589-597.

Dauphin A, Gerard J, Lapeyrie F, Legue V (2007) Fungal hypaphorine reduces growth and induces cytosolic calcium increase in root hairs of Eucalyptus globulus. Protoplasma 231: 83-88.

Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiolog y 107: 315-321.

Delhaize E, Ryan PR, Randall P (1993) Aluminium tolerance in wheat (Triticum aestivum L.) II. Aluminium-stimulated excretion of malic acid from root apices. Plant Physiolog y 103: 695-702.

Dell B, Malajczuk N, Bougher NL, Thomson G (1994) Development and function of Pisolithus and Escleroderma ectomycorrhizas formed in vivo with Allocasuarina, Casuarina and Eucalyptus. Mycorrhiza 5: 129-138.

Ditengou FA, Béguiristain T, Lapeyrie F (2000) Root hair elongation is inhibited by hypaphorine, the indole alkaloid from the ectomycorrhizal fungus Pisolithus tinctorius, and restored by indole-3-acetic acid. Planta 211: 722-728.

Ditengou FA, Raudaskoski M, Lapeyrie F (2003) Hypaphorine, an indole-3- acetic acid antagonist delivered by the ectomycorrhizal fungus Pisolithus tinctorius, induces reorganisation of actin and the microtubule cytoskeleton in Eucalyptus globulus ssp bicostata root hairs. Planta 218: 217-225.

Dueié T, Parladé J, Polee A (2008) The influence of the ectomycorrhizal fungus Rhizopogon subareolatus on growth and nutrient element localization in two varieties of Douglas fir (Pseudotsuga menziesii var. menziessi and var. glauca) in response to manganese stress. Mycorrhiza 18: 227-239.

Façanha AR, De Meis L (1995) Inhibition of maize root H+-ATPase by fluoride and fluoroaluminate complexes. Plant Physiology 108: 241-246.

Façanha AR, Okorokova-Façanha A (2002) Inhibition of phosphate uptake in corn roots by aluminum-fluoride complexes. Plant Physiolog y 129: 1763-1772.

Felix CC, Hyde JS, Sarna T, Sealy RC (1978) Interactions of melanin with metal ions. Electron spin resonance evidence for chelate complexes of metal ions with free radicals. American Chemical Society 100: 3922-3926.

Felten J, Kohler A, Morin E, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legué V (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiolog y 151: 1991-2005.

Felten J, Legué V, Ditengou FA (2010) Lateral root stimulation in the early interaction between Arabidopsis thaliana and the ectomycorrhizal fungus Laccaria bicolor. Plant Signaling & Behavior 5: 864-867.

Foyer CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant, Cell and Environment 17: 507-523.

Frantzios G, Galatis B, Apostolakos P (2001) Aluminum effects on microtubule organization in dividing root tip cells of Triticum turgidum. II. Cytokinetic cells. Journal of Plant Research 114: 157-170.

Fries N, Serck-Hanssen K, Häll Dimberg L, Theander O (1987) Abietic acid, an activator of basidiospore germination in ectomycorrhizal species of the genus Suillus (Boletaceae). Experimental Mycolog y 11: 360-363.

Fukaki H, Tasaka M (2009) Hormone interactions during lateral root formation. Plant Molecular Biolog y 69: 437-449.

Gadd GM (1993) Interactions of fungi with toxic metals. New Phytologist 124: 25-60.

Galli U, Schuepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiologia Plantarum 92: 364-368

Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53: 1-11.

Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment ? Plant and Soil 189: 303-319.

Horan DP, Chilvers GA, Lapeyrie FF (1988) Time sequence of the infection process in eucalypt ectomycorrhizas. New Phytologist 109: 451-458.

Horst WJ (1995) The role of the apoplast in aluminum toxicity and resistance of higher plants: A review. Journal of Plant Nutrition and Soil Science 158: 419-428.

Imhof S (2009) Arbuscular, ecto-related, orchid mycorrhizas-three independent structural lineages towards mycoheterotrophy: implications for classification. Mycorrhiza 19: 357-363.

Jones DL, Kochian LV (1997) Aluminum interaction with plasma membrane lipids and enzyme metal binding sites and its potential role in Al cytotoxicity. FEBS Letters 400: 51-57.

Jones DL, Kochian LV Aluminum inhibition of the inositol 1,4,5-triphosphate signal transduction pathway in wheat roots: A role in aluminum toxicity?. (1995) Plant Cell 7: 1913-1922.

Karabaghli-Degron C, Sotta B, Bonnet M, Gay G, Le Tacon F (1998) The auxin transport inhibitor 2,3,5-triidobenzoic acid (TIBA) inhibits the stimulation of in vitro lateral root formation and the colonization of the tap-root cortex of Norway spruce (Picea abies) seedlings by the ectomycorrhizal fungus Laccaria bicolor. New Phytologist 140: 723-733.

Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41: 197-207.

Kinraide TB (1991) Identity of the rhizotoxic aluminum species. Plant and Soil 134: 167-178.

Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annuals Reviews of Plant Physiolog y and Plant Molecular Biolog y 46: 237-260.

Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant and Soil 274: 175-195.

Krugner TL, Filho MT (1979) Tecnologia de inoculação micorrízica em viveiro de Pinus spp. Instituto de Pesquisas e Estudos Florestais 71: 1-5.

Lagrange H, Jay-Allgmand C, Lapeyrie F (2001) Rutin, the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentrations. New Phytologist 149: 349-355.

Landerweert R, Hoffland E, Finlay RD, Kuyper TW, Breemen NV (2001) Linking plants to rocks: Ectomycorrhizal fungi mobilize nutrients from minerals. TRENDS in Ecolog y & Evolution 16: 248-254.

Lapeyrie F, Ranger J, Vairelles D (1991) Phosphate solubilizing activity of ectomycorrhizal fungi in vitro. Canadian Journal of Botany 69: 342-346.

Larsson B, Tjälve H (1978) Studies on the melanin-affinity of metal ions. Acta Physiologica Scandinavica104: 479-484.

Le Quéré A, Wright DP, Söderström B, Tunlid A, Johansson T (2005) Global patterns of gene regulation associated with the development of ectomycorrhiza between Birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. Molecular Plant-Microbe Interactions 18: 659-673.

Lobão FA, Façanha AR, Okorokov LA, Dutra KR, Okorokova-Façanha AL (2007) Aluminum impairs morphogenic transition and stimulates H+ transport mediated by the plasma membrane H+-ATPase of Yarrowia lipolytica. FEMS Microbiolog y Letters 274: 17-23.

Luo Z-B, Wu C, Zhang C, Li H, Lipka U, Polle A (2013) The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environmental and Experimental Botany In press-Accepted manuscript.

Ma JF, Shen R, Nagao S, Tanimoto E (2004) Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiolog y 45: 583-589.

Maron LG, Kirst M, Mao C, Milner MJ, Menossi M, Kochian LV (2008) Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytologist 179: 116-128.

Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F (2001) Developmental cross talking in the ectomycorrhizal symbiosis signals and communication genes. New Phytologist 151: 145-154.

McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiolog y 14: 94-104.

Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycological Research 107: 1253-1265.

Mishra S, Dubey RS (2006) Heavy metal uptake and detoxification mechanisms in plants. International Journal of Agricultural Research 1: 122-141.

Murphy RJ, Levy JF (1983) Production of copper oxalate by some copper tolerant fungi. Transactions of the British Mycological Society 81: 165-168.

Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemical Letters 8: 199-216.

Navascués J, Pérez-Rontomé C, Sánchez DH, Staudinger C, Wienkoop S, Rellán-Álvarez R, Becana M (2012) Oxidative stress is a consequence, not a cause, of aluminum toxicity in the forage legume Lotus corniculatus. New Phytologist 193: 625-636.

Nehls U, Beguiristain T, Ditengou F, Lapeyrie F, Martin F (1998) The expression of a symbiosis regulated gene in eucalypt roots is regulated by auxins and hypaphorine, the tryptophan betaine of the ectomycorrhizal basidiomycete Pisolithus tinctorius. Planta 207: 296-302.

Nouri J, Khorasani N, Lorestani B, Karami N, Hassani AH, Yousefi N (2009) Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environmental Earth Science 59: 315-323.

Okorokov LA, Kulakovskaya TV, Lichko LP, Polorotova EV (1985) H+ ion antiport as the principal mechanism of transport systems in the vacuolar membrane of the yeast Saccharomyces carlsbergensis. Federation of European Biochemical Societies 192: 303-306.

Osonubi O, Mulongoy K, Awotoye OO, Atayese MO, Okali DUU (1991) Effects of ectomycorrhizal and vesicular-arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings. Plant and Soil 136: 131-143.

Panda SK, Baluska F, Matsumoto H (2009) Aluminum stress signaling in plants. Plant Signaling & Behavior 4: 592-597.

Panda SK, Yamamoto Y, Kondo H, Matsumoto H (2008) Mitochondrial alterations related to programmed cell death in tobacco cells under aluminium stress. C. R. Biolog y 331: 597-610.

Parniske M (2008) Arbuscular mycorrhiza-the mother of plant root endosymbioses. Nature 6: 763-775.

Rauser W E (1999) Structure and function of metal chelators produced by plants – the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochemistry and Biophysics 31: 19-48.

Ray P, Tiwari R, Gangi Reddy U, Adholeya A (2005) Detecting the heavy metal tolerance level in ectomycorrhizal fungi in vitro. World Journal of Microbiolog y & Biotechnolog y 21: 309-315.

Rengel Z, Zhang WH (2003) Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytologist 159: 295-314.

Rensing C, Ghosh M, Rosen BP (1999) Families of soft metal ion transporting ATPases. Journal of Bacteriolog y 181: 5891-5897.

Ribeiro MAQ, Almeida AAF, Mielke MS, Gomes FP, Pires MV, Baligar VC (2013) Aluminum effects on growth photosynthesis, and mineral nutrition of cacao genotypes. Journal of Plant Nutrition 36: 1161-1179.

Rincón-Zachary M, Teaster ND, Sparks JA, Valster AH, Motes CM, Blancaflor EB (2010) Fluorescence resonance energy transfer-sensitized emission of yellow Cameleon 3.60 reveals root zone-specific calcium signatures in Arabidopsis in response to aluminum and other trivalent cations. Plant Physiolog y 152: 1442-1458.

Samac AD, Tesfaye M (2003) Plant improvement for tolerance to aluminum in acid soils – a review. Plant Cell, Tissue and Organ Culture 75: 189-207.

Sanders D, Bethke P (2000) Membrane transport. In, Biochemistry & molecular biolog y of plants. Rockville, American Society of Plant Physiologists, pp 110-158.

Seagull RW (1989) The plant cytoskeleton. Critical Reviews in Plant Science 8: 131-167

Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yang XL, Ahn SJ, Yamaguchi M, Sasakawa H, Matsumoto H (2005) Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Plant Physiolog y 138: 287-296.

Silva IR, Smyth TJ, Moxley DF, Carter TE, Allen NS, Rufty TW (2000) Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiolog y 123: 543-52.

Sivaguru M, Baluska F, Volkmann D, Felle HH, Horst WJ (1999) Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone. Plant Physiolog y 119: 1073-1082.

Slankis V (1973) Hormonal relationships in mycorrhizal development. In, Marks GC, Kozlowski TT (Org) Ectomycorrhizae: their ecology and physiology. New York, Academic Press, pp 231–298.

Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. London, Academic Press.

Splivallo R, Fischer U, Gobel C, Feussner I, Karlovsky P (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiologist 150: 2018-2029.

Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19: 2169-2185.

Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. The Plant Cell 21: 1495-1511.

Sylvia DM, Sinclair WA (1983) Phenolic compounds and resistance to fungal pathogens induced in primary roots of Douglas-Fir seedlings by the ectomycorrhizal fungus Laccaria laccata. Phytopatholog y 73: 390-397.

Tabuchi A, Matsumoto H (2001) Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition. Physiologia Plantarum 112: 353-358.

Tagu D, Lapeyrie F, Martin F (2002) The ectomycorrhizal symbiosis genetics and development. Plant and Soil 244: 97-105.

Taylor G, McDonald-Stephens J, Hunter D, Bertsch P, Elmore D, Rengel Z, Reid R (2000) Direct measurement of aluminum uptake and distribution in single cells of Chara corallina. Plant Physiolog y 123: 987-996.

Van Tichelen KK, Colpaert JV, Vangrosveld J (2001) Ectomycorrhizal protection of Pinus sylvestris against copper toxicity. New Phytologist 150: 203-213.

Vardar F, Unal M (2007) Aluminum toxicity and resistance in higher plants. Advances in Molecular Biolog y 1: 1-12.

Von Uexkull HR, E Mutert (1995) Global extent, development and economic impact of acid soils. Plant and Soil 171: 1-15.

Wallace SU, Andersen I C (1984) Aluminum toxicity and DNA synthesis in wheat roots. Agronomy Journal 76: 5-8.

Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiolog y 128: 63-72.

Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiolog y 146: 602-611.

Yang JL, Zhu FX, Peng YX, Zheng C, Li, GX, Liu Y, Shi YZ, Zheng SJ (2011 A) Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiolog y 155: 1885-1892.

Yang JL, Zhu XF, Peng YX, Zheng C, Ming F, Zheng SJ (2011 B) Aluminum regulates oxalate secretion and plasma membrane H+-ATPase activity independently in tomato roots. Planta 234: 281-291.

Yang ZB, You JF, Xu MY, Yang ZM (2009) Interaction between aluminum toxicity and manganese toxicity in soybean (Glycine max). Plant Soil 319: 277-289.

Yi M, Yi H, Li H, Wu L (2010) Aluminum induces chromosome aberrations, micronuclei, and cell cycle dysfunction in root cells of Vicia faba. Environmental Toxicolog y 25: 124-129.

Cómo citar

Bertolazi, A. A., Venancio, J. B., Figueira, F. F., Souza, S. B., & Barcelos, J. G. (2013). Toxicidade do alumínio e o potencial dos fungos ectomicorrízicos na biorremediação dos solos ácidos. Natureza Online, 11(4), 170–177. Recuperado a partir de https://naturezaonline.com.br/revista/article/view/269

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.