Flooding effect on inicial growing of Tabebuia heptaphylla (Vell.) Toledo (Ipê-rosa)

Authors

  • Thyara A Gregório Escola Superior São Francisco de Assis
  • Luana G Gobbo Escola Superior São Francisco de Assis
  • Joseanne F Cardoso Escola Superior São Francisco de Assis
  • Valdir G Demuner Museu de Biologia Mello Leitão
  • Selma A Hebling Escola Superior São Francisco de Assis

Abstract

The riparian zones are any plant formations near the waterways, no matter their area or region of occurrence and its floristic composition, and so, being subject to temporary or permanent flooding. Those plants are extremely important in ecological terms, and they are essential for maintaining the water quality of rivers and ictiological fauna. Many species grow naturally in areas of riparian forest, but these plants should regularly adapt their metabolism and life cycle of changing the airway in order to support the changes between aerobic and hypoxic, or even anoxic conditions, imposed by the flooding. Despite its undeniable importance environment, the riparian zones have been suffering a strong human pressure in many areas of Brazil. This study aimed to evaluate the effect of the flood on the initial growth of Tabebuia heptaphylla (Vell). Toledo (Ipê rosa) and examine the possibility of using this kind of plant on recovery programs in the riparian zones. Therefore, the plants remained under simulated conditions of flooding for three months, when they were withdrawn the conditions of flooding and submitted to more than two months of treatment in soil in the ability of field. They were used 120 plants, divided into four treatments that included: stopped water flood (AP), with current flood water (AC), ground in the ability of field, (CC) and control with daily watering (C). Monthly were measured the height and diameter of the aerial part of the collect. At the beginning and end of the experiment were obtained from the masses of dry air and part of the root, thereby calculating the ratio of total mass and root / air part. Those results, it was found that the effect of the flood was higher in plants subjected to (AP) and (AC) conditions, where both growth of the air part as the diameter showed total and partial inhibition respectively. Both also showed zero values for the mass of the dry air part, rooting and total mass. Unlike the results described, plants subjected to treatment (C) and (CC) showed a significant increase in the figures for the growth in height, diameter and mass collect the drought. Thus, the results indicate that the species Tabebuia heptaphylla does not tolerate periods of permanent flood.

Keywords:

riparian forest, flood, Tabebuia heptaphylla, tolerance, growing

Downloads

Download data is not yet available.

References

Armstrong W, Justin SHFW, Beckett PM & Lythe S (1991) Root adaptation to soil waterlogging. Aquatic Botany 39: 57-73.

Bacanamwo M & Purcell LC (1999) Soybean root morphological and anatomical traits associated with acclimatation to flooding. Crop Science 39: 143-149.

Bartlett RJ & James BR (1993) Redox chemistry of soil. Advances in Agronomy, San Diego, 50: 151-208.

Bona C & Morretes BL (2003) Anatomia das raízes de Bacopa salzmanii (benth.) Wettst. ex Edwall e Bacopa monnierioides (cham.) Robinson (Scrophulariaceae) em ambientes aquático e terrestre. Acta Botânica Brasílica 17: 155-170.

Botrel R, Oliveira-Filho AT, Rodrigues LA & Curi N (2002) Influência do solo e topografia sobre as variações da composição florística e estrutura da comunidade arbóreo- arbustiva de uma floresta estacional semidecidual em Ingaí, MG. Revista Brasileira de Botânica 25: 195-213.

Bradford KJ & Yang SF (1981) Physiological responses of plants to waterlogging. HortScience 16:25-30.

Campos JC & Landgraf PRC (1990) Análise da cobertura florestal das bacias hidrográficas dos rios Cabo Verde e Machado no Sul de Minas. In: XI Congresso Florestal Brasileiro, Campos do Jordão.

CESP, Companhia Energética de São Paulo (1992) Recomposição de matas nativas pela CESP. São Paulo: CESP, pp 1-13.

Chamas CC (1995) Espécies com potencial ornamental da Estação Biológica de Santa Lúcia / Santa Teresa-ES. Monografia de Curso de pós-graduação “Lato Sensu” em Ecologia e Recursos Naturais, do Departamento de Ecologia e Recursos Naturais da Universidade Federal do Espírito Santo.

Chirkova TV (1988) Pathways of adaptation of plants to hypoxia and anoxia. Fiziologiya Rasstenni 35: 393-411.

Costa AM, Goobbi EL, Demuner VG & Hebling SA (2006) O efeito da inundação do solo sobre o crescimento inicial de Schizolobium parahyba (Vell) S.F. Blake, guarapuruvu, Natureza on line 4: 7-13.

Crawford RMM (1989) Studies in plant survival. Blackwell Scientific Publications.

Dantas BF, Aragão CA & Alves JD (2001) Calcio e o desenvolvimento de aerênquimas e atividade de celulase em plântulas de milho submetidas a hipoxia. Scientia Agricola 58: 251-257.

Drew MC (1992) Soil aeration and plant root metabolism. Soil science 4: 259-268.

Gibbs PE, Leitão-Filho HF & Abbot RJ (1980) Application of the point-centred quarter method in a floristic surney of an area of gallery forest at Mogi-Guaçu, SP, Brazil. Revista Brasileira de Botânica 3: 17-22.

Glinsk J & Stepniewski W (1986) Soil aeration and its role for plants. Florida: CRC Press Inc, pp 228.

Haddad CM, Platzeck CO, Tamassia LFM & Castro FGF (2000) Estabelecimento do capim setária cv. Kazungula em condições de inundação. Scientia Agricola 57: 205-212.

Jackson MB (1985) Ethylene and responses of plants to soil waterlogging and submergence. Annual Review of Plant Physiology and Plant Molecular Biology, Palo Alto 36:145-174.

Jackson MB & Drew MC (1984) Effect of flooding on growth and metabolismo herbaceous plants. In: Kozlowski TT (Ed) Flooding and plant growth. London: Academic Press, pp 47-128.

Kozlowski TT (1984) Responses of woody plants to flooding. In: Kozlowski TT (Ed) Flooding and Plant Growth. London: Academic Press, pp 129-163.

Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiology Monograph 1: 1-29.

Kramer PJ (1983) Water relations of plants. New York: Academic Press, pp146-186.

Leite EJ (2001). Spatial distribution patterns of riverine taxa in Brasília, Brazil. Forest Ecology and Management 140: 257-264.

Levitt J (1980) Responses of plants to environmental stress: water, radiation, salt and other stresses. New York: Academic Press 2: 607.

Lobo PC & Joly CA (2000) Aspectos ecofisiológicos da vegetação de mata ciliar do sudeste do Brasil. In: Rodrigues RR & Leitão-Filho HF (Eds) Matas Ciliares: Conservação e Recuperação. São Paulo: Edusp/ Fapesp, pp 143-155.

Medri ME, Bianchini E, Pimenta JA, Delgado MF & Correa GT (1998) Aspectos morfo-anatômicos e fisiológicos de Peltophorum dubium (Spr.) Taub. submetida ao alagamento e à aplicação de ethrel. Revista Brasileira de Botânica 21: 153-158.

Moreno MIC & Schiavini I (2001) Relação entre vegetação e solo em um gradiente florestal na Estação Ecológica do Panga, Uberlândia (MG). Revista Brasileira de Botânica 24: 537-544.

Nimer E (1977) Clima e Geografia do Brasil: Região Sudeste. Rio de Janeiro: Fundação IBGE.

Oliveira-Filho AT (1994) Estudos ecológicos da vegetação como subsídios para programas de revegetação com espécies nativas: uma proposta metodológica. Cerne 1: 64-72.

Perata P & Alpi A (1993) Plant responses to anaerobiosis. Plant Science 93: 1-17.

Pezeski SR, Pardue JH & Delaune RD (1996) Leaf gas exchange and growth of flood- tolerant and flood- sensitive tree species under low soil redox conditions. Tree physiology 16: 453-458.

Piedade MTF, Worbes M & Junk WJ (2001) Geoecological controls on elemental fluxes in communities of higher plants in Amazonian floodplains. In: McClain ME, Victoria RL & Richey JE (Eds) The Biogeochemistry of the Amazon Basin. New York: Oxford University Press, pp 209-234.

Ponnamperuma FN (1984) Efects of flooding on soil. In: Kozlowski, TT (Ed) Flooding and Plant Growth. London: Academic Press, pp 10-43.

Redford KH & Fonseca GAB (1996) The role of gallery forest in the zoogeography of the cerrado’s non-volant mammalian fauna. Biotropica 18: 126-135.

Reid DM & Bradford KJ (1984) Effects of flooding on hormonal relations. In: Kozlowski TT (Ed) Flooding and Plant Growth. San Diego: Academic Press, pp 195-219.

Rodrigues RR & Nave AG (2000) Heterogeneidade Florística das Matas Ciliares. In: Rodrigues RR& Leitão Filho HF(Eds) Matas Ciliares: conservação e recuperação. São Paulo: Edusp/Fapesp, pp 45-71.

Rodrigues TJD, Rodrigues LRA & Reis RA (1993) Adaptação de plantas forrageiras às condições adversas. In: II Simpósio sobre ecossistema de pastagens, Jaboticabal, SP.

Rowe RN & Beardsell DV (1973) Watrelogging of fruit trees. Horticultural Abstracts 43: 533-548.

Saab IN & Sachs MM (1996) A flooding-induced xyloglucan endotransglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma. Plant Physiology 112: 385-391.

Sá JS, Cruciani DE & Minami K (2004) Efeitos de inundações temporárias do solo em plantas de ervilha. Horticultura Brasileira 22: 50-54.

Santos AB, Fageria NK & Zimmermann FJP (2002) Atributos químicos do solo afetado pelo manejo da água e do fertilizante potássico na cultura de arroz irrigado. Revista Brasileira de Engenharia Agrícola e Ambiental 6: 12-16.

Silva AR (1986) Tolerância das plantas ao encharcamento. In: I Simpósio sobre alternativas ao sistema tradicional de utilização das várzeas do Rio Grande do Sul, Porto Alegre , RS.

Taiz L & Zeiger E (2004) Fisiologia do estress: deficiência de oxigênio. In: Fisiologia vegetal Porto Alegre: Artmed, pp 635-64.

Tang ZC & Kozlowski TT (1982) Some physiological and growth responses of Betula papyrifera seedling to flooding. Physiology Plantarum 55: 415-420.

Vieira S (1998) Introdução à Bioestatística. Rio de Janeiro: Campus.

How to Cite

Gregório, T. A., Gobbo, L. G., Cardoso, J. F., Demuner, V. G., & Hebling, S. A. (2008). Flooding effect on inicial growing of Tabebuia heptaphylla (Vell.) Toledo (Ipê-rosa). Natureza Online, 6(2), 91–98. Retrieved from https://naturezaonline.com.br/revista/article/view/423