Using oxidative stress enzymes as biomarkers in environmental impacts
Abstract
The intensive use of xenobiotic composites in activities of humans held responsible for environmental contamination resulting in alterations in different ecological levels. To gain information about the possible consequences of the use of these harmful composites, biomarkers or bioindicators are used. In aquatic environments, where the organism is in direct contact with composites, the examination of harmful effects is of special interest. Enzymes became of special interest in their use as biomarkers, as an increase or inhibition of enzymatic activity may indicate a response to environmental stress. Several studies use the determination of the enzymatic activity to monitor the environment comparing data of control group with those of contaminated areas. Catalase and the superoxide dismutase are important enzymes as they participate in detoxication. The enzymes are known to have impact on the survival rate in animals living in contaminated areas. The analysis of the activity of those enzymes enable to gain information about the amount of pollution and are seen as alert signal of contamination. Therefore, the determination of those enzymes is seen as one important technique for the environmental monitoring and control of activities of human beings and their effects on the environment.
Keywords:
Downloads
References
Aebi H (1984) Catalase in Vitro. Methods in Enzymology 105:121-126.
Alves SRC, Severino PC, Ibbotson DP, Silva AZ, Lopes FRAS, Sáenz LA & Bainy ACD (2002) Effects of furadan in the brown mussel Perna perna and in the mangrove oyster Crassostrea rhizophorae. Marine Environmental Research 54:241-245.
Anandraj A, Marshall DJ, Gregory MA & McClurg TP (2002) Metal accumulation, filtration and O2 uptake rates in the mussel Perna perna (Mollusca: Bivalvia) exposed to Hg2+, Cu2+ and Zn2+. Comparative Biochemistry and Physiology Part C 132:355-363.
Arias ARL, Buss DF, Alburquerque C, Inácio AF, Freire MM, Egler M, Mugnai R & Baptista DF (2007) Utilização de bioindicadores na avaliação de impacto e no monitoramento da contaminação de rios e córregos por agrotóxicos. Ciência e saúde coletiva 12:61-72.
Aspuro-Hernandez E, Garcia-Orozco KD, Muhlia-Almazan LTS, Robles-Sanches RM, Hernandez J, Gonzales-Aguilar G, Yepiz- Plascenci G & Sotelo-Mundo RR (2008) Shrimp thioredoxin is a potent antioxidant protein. Comparative Biochemistry and Physiology Part C 148:94-99.
Atli G & Canli M (2007) Enzymatic responses to metal exposures in a freshwater fish Oreochromis niloticus. Comparative Biochemistry and Physiology Part C 145:282-287.
Avilez IM, Hori TSF, Almeida LC, Hackbarth A, Bastos Neto JC, Bastos VLFC & Moraes G (2008) Effects of phenol in antioxidant metabolism in matrinxã, Brycon amazonicus (Teleostei; Characidae). Comparative Biochemistry and physiology Part C 148:136-142.
Bainy ACD, Almeida EA, Müller IC, Ventura EC & Medeiros ID (2000) Biochemical responses in farmed mussel Perna perna transplanted to contaminated sites on Santa Catarina Island, SC, Brazil. Marine Environmental Research 50:411-416.
Bainy ACD, Saito E, Carvalho PSM & Junqueira VBC (1996) Oxidative stress in Gill, erythrocytes, liver and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site. Aquatic Toxicology 34:151-162.
Berg JM, Tymoczko JL & Stryer L (2004) Bioquímica. 5.ed. Rio de Janeiro: Guanabara Koogan.
Bernet D, Schmidt H, Wahli T & Burkardt-Holm P (2001) Effluent from a sewage treatment works causes changes in serum chemistry of brown trout (Salmo trutta L.). Ecotoxicology and Environmental Safety 48:140-147.
Bertin G & Averbeck D (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88:1549-1559.
Bocchetti R, Fattorini D, Pisanelli B, Macchia S, Oliviero L, Pilato F, Pellegrini D & Regoli F (2008) Contaminant accumulation and biomarker responses in caged mussels, Mytilus galloprovincialis, to evaluate bioavailability and toxicological effects of remobilized chemicals during dredging and disposal operations in harbour areas. Aquatic Toxicology 89:257-266.
Bonnet JL, Bonnemoy F, Dusser M & Bohatier J (2008) Toxicity assessment of the herbicides sulcotrione and mesotrione toward two reference environmental microorganisms: Tetrahymena pyriformis and Vibrio fischeri. Archives of Environmental Contamination and Toxicology 55:576-583.
Carletti E, Sulpizio M, Bocciarelli T, Boccio PD, Federici L & Di Ilio C (2008) Glutathione transferases from Anguilla anguilla liver: Identification, cloning and functional characterization. Aquatic Toxicology 90:48-57.
Chandran R, Sivakumar AA, Mohandass S & Aruchami M (2005) Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica. Comparative Biochemistry and physiology Part C 140:422-426.
Company R, Serafim A, Bebianno MJ, Cosson R, Shillito B & Fiala- Mèdioni A (2004) Effect of cadmium, copper and Mercury on antioxidant enzyme activities and lipid peroxidation in the gills of the hydrothermal vent mussel Bathymodiolus azoricus. Marine Environmental Research 58:377-381.
Dautremepuits C, Paris-Palacios S, Betoulle S & Vernet G (2004) Modulation in hepatic and head kidney parameters of carp (Cyprinus carpio L.) induced by copper and chitosan. Comparative Biochemistry and Physiology Part C 137:325-333.
Flohé L & Ötting F (1884) Superoxide Dismutase Assays. Methods in Enzymology 105:93-94.
Gu J, Li Y, Xie L & Zhang R (2006) Metal accumulation and enzyme activities in gills and digestive gland of pearl oyster (Pinctada fucata) exposed to copper. Comparative Biochemistry and Physiology Part C.
Hansen BH, Romma S, Garmo A, Olsvik PA & Andersen RA (2006) Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comparative Biochemistry and Physiology Part C 143:263-274.
Huber PC & Almeida WP (2008) Glutationa e enzimas relacionas: papel biológico e importância em processos patológicos. Química Nova 31:1170-1179.
Ivanina AV, Habinck E & Sokolova IM (2008) Differential sensitivity to cadmium of key mitochondrial enzymes in the eastern oyster, Crassostrea virginica Gmelin (Bivalvia: Ostreidae). Comparative Biochemistry and Physiology Part C 148:72-79.
Lam WG, Wong MK, Chen N & Sin YM (1995) Effect of combined copper, zinc, chromium and selenium by orthogonal array design on alkaline phosphatase activity in liver of the red sea bream, Chrysophrys major. Aquaculture 131:219-230.
Lehninger AL, Nelson DL & Cox MM (1995) Princípios de Bioquímica. 2.ed. São Paulo: Savier.
Letendre J, Chouquet B, Rocher B, Manduzio H, Leboulenger F & Durand F (2008) Differential pattern of Cu/Zn superoxide dismutase isoforms in relation to tidal spatio-temporal changes in the blue mussel Mytilus edulis. Comparative Biochemistry and Physiology Part C 148:211-216.
Levy JL, Angel BM, Stauber JL, Poon WL, Simpson SL, Cheng SH & Jolley DF (2008) Uptake and internalization of copper by three marine microalgae: Comparison of copper-sensitive and copper-tolerant species. Aquatic Toxicology 89:82-93.
Livingstone DR (1993) Biotechnology and pollution monitoring: use of molecular biomarkers in the aquatic environment. Journal Chemistry Technology and Biotechnology 57:195-211.
McCord JM & Fridovich I (1969) Superoxide Dismutase: an enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry 244:6049-6055.
Monserrat JM, Lima JV, Ferreira JLR, Acosta D, Garcia ML, Ramos PB, Moraes TB, Santos LC & Amado LL (2008) Modulation of antioxidant and detoxification responses mediated by lipoic acid in the fish Corydoras paleatus (Callychthyidae). Comparative Biochemistry and Physiology Part C 148:287-292.
Ng TY-T, Rainbow PS, Amiard-Triquet C, Amiard J-C & Wang W-X (2008) Decoupling of cadmium biokinetics and metallothionein turnover in a marine polychaete after metal exposure. Aquatic Toxicology 89:47-54.
Nicholson S & Lam PKS (2005) Pollution monitoring in Southeast Asia using biomarker in the mytilid mussel Perna viridis (Mytilidae: Bivalvia). Environment International 31:121-132.
Rashed NM (2001) Monitoring of environmental heavy metals in fish from Nasser Lake. Environment International 27:27-33.
Regoli F, Nigro M & Orlando E (1998) Lysosomal and antioxidant responses to metals in the Antarctic scallop Adamussium colbecki. Aquatic Toxicology 40:375-392.
Tekman B, Ozdemir H, Senturk M & Ciftci M (2008) Purification and characterization of glutathione reductase from rainbow trout (Oncorhynchus mykiss) liver and inhibition effects of metal ions on enzyme activity. Comparative Biochemistry and Physiology Part C 148:117-121.
Valavanidis A, Vlahogianni T, Dassenakis M & Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety 64:178-189.
Ventura EC, Gaelzer LR, Zanette J, Marques MRF & Bainy ACD (2002) Biochemical indicators of contaminant exposure in spotted pigfish (Orthopristis rubber) caught at three bays of Rio de Janeiro coast. Marine Environmental Research 54:775-779.
Zanette J, Nunes FF, Medeiros ID, Siebert MN, Mattos JJ, Lüchmann KH, Melo CMR & Bainy ACD (2008) Comparison of the antioxidant defense system in Crassostrea rhizophorae and Crassostrea gigas exposed to domestic sewage discharges. Marine Environmental Researc 66:196-198.
How to Cite
License
Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.