The role of ectomycorrhiza in heavy metals bioremediation in soil

Authors

  • Amanda A Bertolazi Centro Universitário Vila Velha
  • Gabriela C Canton Centro Universitário Vila Velha
  • Inga G Azevedo Universidade Estadual do Norte Fluminense
  • Zilma MA Cruz Centro Universitário Vila Velha
  • Daniela NES Soares Centro Universitário Vila Velha
  • Juliana M Conceição Centro Universitário Vila Velha
  • Wolmen O Santos Centro Universitário Vila Velha
  • Alessandro C Ramos Centro Universitário Vila Velha

Abstract

The increase of natural and human activity has caused the migration of contaminants, such as heavy metals, to non contaminated areas. In general, their high availability causes serious problems to ecosystems, because when present in the form of soluble ions are absorbed by plants inhibiting a series of biological and physiological factors. High levels of zinc, cadmium and copper are responsible for areas degradation and difficulty of revegetation, and Cd offers greater environmental risk due to its high toxicity. To minimize such effects, studies are being conducted using mycorrhizal associations, which consist of a symbiotic association between soil fungi (Basidiomycetes and Ascomycota) and roots of vascular plants, whereas the fungus provides water and nutrients to the plant and the vegetable provides carbohydrates for the fungus produced from photosynthesis. They are classified into different types, depending on the plant, the fungus and the colonization characteristic. The ectomycorrhiza represent a type of mycorrhizal association and are characterized by intercellular growth, forming a mantle of hyphae around the root. Its widespread occurrence in forests of host plants and the effects on these, make these associations important compounds of natural ecosystems and planted forests. Several studies have shown that ectomycorrhiza protect plants against typical soil pollutants such as heavy metals, including Cd, Pb, Cu, Zn, Ni, etc., removing them from the soil and preventing them from being absorbed by the plants roots. This ability is due to the fact that mycorrhizal fungi possess various mechanisms that prevent the translocation of metals to the plant. Among them are the binding of metals to cell wall components such as chitin, cellulose, cellulose derivatives and melanin, certain proteins such as metallothionein, glutathione and polyphosphate granules. The mycelium retention capacity and the extrametrical mycelium density can act as a physical barrier against metals, and the intracellular absorption and subsequent detoxification in the fungal vacuoles may reduce the metal absorption in the host plant. Another process involved in tolerance of ectomychorryzal to heavy metals is the transport of ions and other metabolites mediated by membrane proteins. Among them is the plasma membrane H+- ATPases, responsible for generating an electrochemical gradient of H+ responsible for regulate the transport of secondary substances such as heavy metals. For the correct operation of this enzyme an exact regulation mechanism is required, in which several factors are involved mainly acidic pH and glucose. Several studies have shown an increased activity of H+-ATPase in the presence of ectomycorrhizal fungi. Thus, it is necessary to perform further studies to elucidate the mechanisms of bioremediation provided by ectomycorrhizal fungi, especially a better understanding of the regulation of proton pumps and transporters in the fungal membrane.

Keywords:

mycorrhiza, tolerance, transport, H+-ATPase and mechanisms

Downloads

Download data is not yet available.

Author Biographies

Amanda A Bertolazi, Centro Universitário Vila Velha

Graduação em Ciências Biológicas.

Gabriela C Canton, Centro Universitário Vila Velha

Graduação em Ciências Biológicas.

Alessandro C Ramos, Centro Universitário Vila Velha

Professor Titular I.

References

Abreu CA, Abreu MF e Andrade JC. Determinação de cobre, ferro, manganês, zinco, cádmio, cromo, níquel e chumbo em solos usando a solução DTPA em ph 7,3. In: Raij V (Ed) Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico.

Accioly AMA e Siqueira JO (2000) Contaminação química e biorremediação do solo. In: Novaes RF, Alvarez VHV e Schaefer CEGR Tópicos em ciência do solo. Viçosa: UFV, pp 299-352.

Accioly AMA (2001) Amenizantes e estratégias para estabelecimento de vegetação em solos de áreas contaminadas por metais pesados. Tese de Doutorado. Doutorado em Solos e Nutrição de Plantas, Universidade Federal de Lavras (UFLA), Lavras, MG.

Bago B, Donaire JP e Azcón-Aguilar C (1997) ATPase activities of root microsomes from mycorrhizal sunflower (Helianthus annuus) and onion (Allium cepa) plants. New Phytologist. 136: 305-311.

Baker AJM (1987) Metal tolerance. New Phytologist. 106: 93-111.

Baker AJM, McGrath SP, Sodoli CMD e Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metalaccumulating plants. Resources, Conservation and Recycling. 11: 41-49.

Bell AA e Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Phytopatholog y. 24: 411-451.

Bellei M e Carvalho MS (1992) Ectomicorrizas. In: Cardoso EJBN, Tsai SM e Neve MCP Microbiologia do Solo. Campinas: Sociedade Brasileira de Ciência do Solo, pp. 297-318.

Bellei M (1987) Micorrizas de Eucalyptus spp. em viveiros e florestas de Santa Catarina. Florianópolis: UFSC.

Bellion M, Courbot M, Jacob C, Blaudez, D e Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. Microbiolog y Letters. 254: 173-181.

Bellote AFJ e Ferreira CA (1993) Nutrientes minerais e crescimento de árvores adubadas de Eucalyptus grandis, na região do cerrado, no Estado de São Paulo. Boletim Pesquisa Florestal. 26/27: 17-28.

Benite AMC, Machado SP e Barreiro EJ (2007) Uma visão da química bioinorgânica medicinal. Química Nova. 30: 2062-2067.

Bisinoti MC, Yabe MJS e Gimenez SMN (2004) Avaliação da influência de metais pesados no sistema aquático da bacia hidrográfica da cidade de Londrina – PR. Revista Analytica. 8: 22-27.

Brown MT e Wilkins DA (1985) Zinc tolerance of mycorrhizal Betula. New Phytologist. 99: 101–106.

Carneiro MAC, Siqueira JO e Moreira FMS (2001) Estabelecimento de plantas herbáceas em solos com contaminação de metais pesados e inoculação de fungos micorrízicos arbusculares. Pesquisa Agropecuária Brasileira. 36: 1443-1452.

Chen BD, Li XL, Tao HQ, Christie P e Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere. 50: 839-846.

Colpaert JV e Van Assche JA (1992) Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant and Soil. 143: 201-211.

Colpaert JV e Van Assche JA (1993) The effects of cadmium on ectomycorrhizal Pinus sylvestris L.. New Phytologist. 123: 325–333.

Courbot M, Diez L, Ruotolo R, Chalot M e Leroy P (2004) Cadmium- responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Environmental Microbiolog y. 70: 7413-7417.

Cunningham SD, Anderson TA, Schwab AP e Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Advance in Agronomy. 56: 55-114.

Dixon RK e Buschena CA (1988) Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy metals in soil. Plant Soil. 105: 265-271.

Ferrol N, Pozo MJ, Antelo M e Azcón-Aguilar C (2002) Arbuscular mycorrhizal symbioses regulate plasma membrane H+-ATPase gene expression in tomato plants. Journal of Experimental Botany. 53: 1683-1687.

Fogarty RV e Tobin JM (1996) Fungal melanins and their interactions with metals. Enzyme and Microbial Technolog y. 19: 311-317.

Gadd GM e De Rome L (1988) Biosorption of Cooper by fungal melanin. Applied Microbiolog y Biotechnolog y. 29: 610-617.

Gadd GM (1993) Interactions of fungi with toxic metals. New Phytologist. 124: 25-60.

Galli U, Schuepp H e Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Plant Physiolog y. 92: 364–368.

Giller KE, Witter E e McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biolog y and Biochemistry. 30: 1389-1414.

Godbold DL, Jentschke G, Winter S e Marschner P ( 1998) Ectomycorrhizas and amelioration of metal stress in forest trees. Chemosphere. 36: 757-762.

Grazziotti PH, Siqueira JO, Moreira FM e Carvalho D (2001) Tolerância de fungos ectomicorrízicos a metais pesados em meio de cultura adicionado de solo contaminado. Revista Brasileira de Ciência do Solo. 25: 839-848.

Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. Journal of experimental Botany. 53: 1-11.

Hartley J, Cairney JWG e Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptative tolerance to potencially toxic metals in the envyronment?. Plant and Soil. 189: 303-319.

Hocking PJ, Pate JS, Wee SC e McComb AJ (1977) Mn nutrition of Lupins spp. Especially in relation to developing seeds. Ann Bot. 41: 677-688.

Jones MD e Hutchinson TC (1986) The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytologist. 102: 429-442.

Khan AG, Kuek C, Chaudhry TM, Khoo CS e Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere. 41: 197-207.

Kistner C e Parniske M (2002) Evolution of signal transduction in intracellular symbiosis. Trends in Plant Science. 7: 511-518.

Macedo LS e Morril WBB (2008) Origem e comportamento dos metais fitotóxicos: revisão de literatura. Tecnologia e Ciência Agropecuária. 2: 29-38.

Martins I e Lima IV (2001) Ecotoxicologia do manganês e seus compostos. Cadernos de referencia ambiental. 7: 1-122.

Marx D. Forest application of the ectomycorrhizal fungus Pisolithus tinctorius. Stockholm: The Marcus Wallenberg Prize.

Matos RMB, Silva EMR e Lima E. Fungos micorrízicos e nutrição de plantas. Embrapa Agrobiologia, Seropédica, 1999.

Melarato M, Panobianco M, Vitti GC e Vieira RD (2002) Manganês e potencial fisiológico de sementes de soja. Ciência Rural. 32: 1069-1071.

Morselt AFW, Smits WTM e Limonard T (1986) Histochemical demonstration of heavy metal tolerance in ectomycorrhizal fungi. Plant and Soil. 96: 417-420.

Murphy RJ e Levy JF (1983) Production of copper oxalate by some copper tolerant fungi. Transactions of the British Mycological Society. 81: 165-168.

Natale W, Prado RM, Corrêa MCM, Silva MAC e Pereira L (2002) Resposta de mudas de goiabeira à aplicação de zinco. Revista Brasileira de Fruticultura. 24: 770-773.

Nehls U (2008) Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. Journal of Experimental Botany. 59: 1097-1108.

Portillo F (2000) Regulation of plasma membrane H.-ATPase in fungi and plants. Biochimica et Biophysica Acta. 1469: 31-42.

Ramos AC, Martins MC e Façanha AR (2005) Atividade ATPásica e pirofosfatásica em microssomos de raízes de milho colonizadas com fungos micorrízicos arbusculares. Revista Brasileira de Ciências do Solo. 29: 207-213.

Rauser WE (1999) Structure and function of metal chelators produced by plants – the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochemistry and Biophysics. 31: 19-48.

Ray P, Tiwari R, Reddy UG e Adholeya A (2005) Detecting the heavy metal tolerance level in ectomycorrhizal fungi in vitro. World Journal of Microbiolog y e Biotechnolog y. 21: 309–315.

Requena N, Breuninger M, Franken P e Ocón A (2003) Symbiotic Status, Phosphate, and Sucrose Regulate the Expression of Two Plasma Membrane H+-ATPase Genes from the Mycorrhizal Fungus Glomus mosseae. Plant Physiolog y. 132: 1540-1549.

Rivera-Bacerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ e Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. Journal of Experimental Botany. 53: 1177- 1185.

Rosolem CA e Ferelli L (2000) Resposta diferencial de cultivares de algodão ao manganês em solução nutritiva. Revista Brasileira de Ciência do Solo. 24: 355-361.

Santos LC (2006) Efeito do cobre na população de bactérias e fungos do solo, associação ectomicorrízica e no desenvolvimento de mudas de Eucalipto e Canafístula. Dissertação de Mestrado. Mestrado em Ciências do Solo, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS.

Sgarbi F e Silveira RLVA. Monitoramento nutricional e da fertilidade do solo em plantios de eucalipto na Votorantim Celulose e Papel, no sul do estado de São Paulo. Relatório de pesquisa da Voltorantim Celulose e Papel, 2001.

Silva RF, Salles AS, Leal LT, Lupatini M, Moro CAJ e Antoniolli ZI (2007) Ectomicorriza na Tolerância de Mudas de Canafístula Peltophorum dubium (Spreng.) Taub. a Solo Contaminado por Cobre. In: XXXI Congresso Brasileiro de Ciência do Solo, Gramado.

Silva S, Siqueira JO e Soares CRFS (2006) Fungos micorrízicos no crescimento e na extração de metais pesadospela braquiária em solo contaminado. Pesquisa Agropecuária Brasileira. 41: 1749-1757.

Smith SE e Read DJ (1997) Mycorrhizal symbiosis. Biologia Plantarum. 40: 154-154.

Soares CRFS, Grazziotti PH, Siqueira JO, Carvalho JG e Moreira FMS (2001) Toxidez de zinco no crescimento e nutrição de Eucalyptus maculata e Eucalyptus urophylla em solução nutritiva. Pesquisa Agropecuária Brasileira. 36: 339-348.

Sodré FF e Lenzi, E (2001) Utilização de modelos físico-químicos de adsorção no estudo do comportamento do cobre em solos argilosos. Química Nova. 24: 324-330.

Sodré FF, Lenzi E e Costa ACS (2001) Utilização de modelos físico-químicos de adsorção no estudo do comportamento do cobre em solos argilosos. Química Nova. 24: 324-330.

Soratto RP, Silva TRB, Borghi E, Silva LM e Rosolem CA (2005) Resposta de quatro cultivares de feijão ao manganês em solução nutritiva. Revista Brasileira Agrociência. 11: 235-240.

Souza LAB, Filho GNS e Oliveira VL (2004) Eficiência de fungos ectomicorrízicos na absorção de fósforo e na promoção do crescimento de eucalipto. Pesquisa Agropecuária Brasileira. 39: 349-355.

Souza VC, Silva RA, Cardoso GD e Barreto AF (2006)Estudos sobre fungos micorrízicos. Revista Brasileira de Engenharia Agrícola e Ambiental. 10: 612-618.

Sutter HP, Jones EBG e Walchli O (1983) The mechanism of copper tolerance in Poria placenta (Fr.) Cke and Poria caillantii (Pers.) Fr. Material und Organismen. 18: 243-263.

Taiz L e Zeiger E (2004) Fisiologia Vegetal. Porto Alegre: Artmed.

Tam PCF (1995) Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza. 5: 181-187.

Targhetta BL (2008) Tolerância de fungos ectomicorrízicos e plantas associadas a níveis tóxicos de metais. Monografia. Curso de graduação em Ciências Biológicas, Universidade federal de Santa Catarina (UFSC), Florianópolis, SC.

Teixeira IR, Borém A, Araújo GAA e Andrade MJP (2005) Teores de nutrientes e qualidade fisiológica de sementes de feijão em resposta à adubação foliar com manganês e zinco. Bragantia. 64: 83-88.

Van Assche F e Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant, Cell and Enviroment. 13: 195-206.

Van Tichelen KK, Colpaert JV e Vangronsveld J (2001) Ectomycorrhiza protection of Pinus sylvestris against copper toxicity. New Phytologist. 150: 203-213.

Vangrosveld J, Colpaert JV e Tichelen KK (1997) Reclamation of a bare industrial area contaminated by non-ferrous metals: physicochemical and biological evaluation of the durability of soil treatment and revegetation. Environmental Pollution. 94: 131-140.

Vansteveninck RFM, Vansteveninck ME, Fernando DR, Goldbold DL, Horst WJ e Marschner H (1987) Idestification of zinc-containing glogules in roots of a zinc-tolerant ecotype of Deschampsia caespitosa. Journal of Plant Nutrition. 10: 1239-1246.

Weissenhorn I, Glashoff A, Leyval C e Berthelin J (1994) Difeferential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores isolated from heavy metal-polluted and unpolluted soils. Plant and Soil. 167: 189-196.

Wheeler W (1994) Site Remediation: An Australian perspective on best practice. In: Cole J (Ed) Environmental Management Industry Association of Australia Year Book. Waterloo: Executive Media Pty. Ltd. pp 156-160.

How to Cite

Bertolazi, A. A., Canton, G. C., Azevedo, I. G., Cruz, Z. M., Soares, D. N., Conceição, J. M., … Ramos, A. C. (2010). The role of ectomycorrhiza in heavy metals bioremediation in soil. Natureza Online, 8(1), 24–31. Retrieved from https://naturezaonline.com.br/revista/article/view/369

Most read articles by the same author(s)

<< < 1 2