Caracterização bioquímica das proteínas de defesa contra o estresse oxidativo em plantas e suas rotas biossintéticas dos metabólitos secundários

Autores

  • Carlos Moacir Colodete Universidade Vila Velha
  • Katherine Fragas Ruas Universidade Vila Velha
  • Juliano de Oliveira Barbirato Universidade Vila Velha
  • André Luiz P. Barroso Universidade Vila Velha
  • Leonardo Barros Dobbss Universidade Vila Velha

Resumo

O objetivo desta presente revisão é caracterizar as novas abordagens proteômicas dos mecanismos de regulação da defesa contra o estresse oxidativo em plantas. Plantas e patógenos estabelecem relações, resultando em trocas de informações bioquímicas. Nesse sentido, certos compartimentos celulares destas plantas desenvolvem variados mecanismos de defesa. O primeiro mecanismo é pré-existente, através de barreiras estruturais e/ou compostos antimicrobianos pré-formados. O segundo são induzidos, como respostas hipersensitivas (HR), acúmulos de metabólitos secundários, por meio das fitoalexinas, síntese de moléculas sinalizadoras, indução de enzimas hidrolíticas, deposição de lignina na parede celular, biossíntese de proteínas relacionadas à patogênese (PRs) e geração de espécies reativas de oxigênio (EROs). As principais EROs são peróxido de hidrogênio (H2O2), íons superóxido (O2•-) e radicais hidroxilas (•OH). Estes compostos químicos funcionam como ação tóxica direta contra patógenos. Entretanto, quando em excesso, podem levar à oxidação de proteínas, ácidos graxos insaturados e ácidos nucleicos. Para evitar tais danos, as plantas ativam eficientes sistemas antioxidantes como às enzimas dismutase de superóxido (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) e peroxidase do ascorbato (APX, EC 1.11.1.11). Aqui, discutimos várias proteínas de defesa da parede celular vegetal, bem como as de atividade antimicrobiana. É corroborado neste trabalho, que o ácido jasmônico (AJ) induz substancialmente a defesa vegetal. Além disso, propomos modelos sobre a rota de conversão do ácido linolênico em AJ. Abordamos de forma simplificada, mas consistente, as divisões dos metabólitos secundários, bem como seus atributos ecológicos e agrícolas. Finalmente, apresentamos um modelo esquemático sumarizado das principais rotas de biossíntese dos metabólitos secundários e suas inter-relações com o metabolismo primário.

Palavras-chave:

peróxido de hidrogênio, íons superóxido, radical hidroxila, ácido jasmônico

Downloads

Não há dados estatísticos.

Biografia do Autor

Carlos Moacir Colodete, Universidade Vila Velha

Organic Matter Ecology Laboratory (LEMO), Universidade Vila Velha (UVV). Doctoral student at the Pos-Graduate Program in Ecosystem Ecology (PPEE).

Katherine Fragas Ruas, Universidade Vila Velha

Organic Matter Ecology Laboratory (LEMO), Universidade Vila Velha (UVV). Master student at PPEE.

Juliano de Oliveira Barbirato, Universidade Vila Velha

Organic Matter Ecology Laboratory (LEMO), Universidade Vila Velha (UVV). Doctoral student at PPEE.

André Luiz P. Barroso, Universidade Vila Velha

Organic Matter Ecology Laboratory (LEMO), Universidade Vila Velha (UVV). Master student at PPEE.

Leonardo Barros Dobbss, Universidade Vila Velha

Organic Matter Ecology Laboratory (LEMO), Universidade Vila Velha (UVV). Full Professor, UVV/PPEE.

Referências

Agati G, Azzarello E, Pollastri S, Tattin M (2012) Flavonoids as antioxidants in plants: Location and functional significance. Plant Science 196: 67-76.

Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406: 512–515.

Armelle T, Mbaveng G, Zhao Q, Kuete V (2014) Harmful and Protective Effects of Phenolic Compounds from African Medicinal Plants. Toxicological Survey of African Medicinal Plants 33: 577-609.

Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Journal Science 82: 1227-1238.

Blée E, Schuber F (1992a) Occurrence of fatty acid epoxide hydrolases in soybean: purification and characterization of the soluble form Glycine max L. Biochemical Journal 282: 711-714.

Blée E, Schuber F (1992b) Region and enantioselectivity of soybean fatty acid epoxide hydrolase Glycine max L. Biology Chemical 267: 11881-11887.

Bowless DJ (1990a) Signal in the wounded plant. Nature 343: 314-315.

Breusegem F, Vranova E, Dat JF, Inze D (2001) The role active oxygen species in plant signal transduction. Plant Science 161: 405-414.

Cenzano A, Abdala G, Hause B (2007) Cytochemical immuno-localization of allene oxide cyclase, a jasmonic acid biosynthetic enzyme, in developing potato stolons. Journal of Plant Physiology 164: 1449- 1456.

Collinge DB (2009) Cell wall appositions: the first line of defence. Journal of Experimental Botany 60: 351-352.

Coninck B, Timmermans P, Vos C, Bruno PA, Kazan K (2014) What lies beneath: belowground defense strategies in plants. Cell Press 11: 1- 11.

Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences 101: 1781-1785.

Fong-Chin Huang F, Wilfried Schwab S (2013) Transformation of terpenes into fine chemicals. European Journal of Lipid Science and Technology 115: 3-8.

Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in physiological context. Plant Cell Enviromental 28: 1056-1071.

Garcia-Breijo FJ, Garro R, Conejero V (1990) C7 (P32) and C6 (P34) PR proteins induced in tomato leaves by Citrus exocortis viroid infection are chitinases. Physiological and Molecular Plant Pathology 36: 249-260.

Giannopolitis CN, Ries SK (1977) Superoxide dismutases. Occurrence in higher plants. Plant Physiol 59: 309-314.

Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.) Plant Science 182: 112-120.

Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48: 909-930.

Guggisberg A, Hesse M (2003) Alkaloids in plant. Sciences and Chemical Engineering Encyclopedia of Physical Science and Technology 22: 477-493.

Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiology Plant 31: 427-436.

Jones JDG, Dangl JL (2006) The plant immune system. Nature 444: 323- 329.

Kiyosue T, Beetham JK, Pinot F, Hammock BD Yamaguchi-Shinozaki K (1994) Isolation and characterization of cDNA that encodes a soluble epoxide hydrolase from Arabidopsis thaliana L. Journal Plant 6: 259-269.

Kolomiets MV, Yan Y, Borrego E (2013) Jasmonate Biosynthesis, Perception and Function in Plant Development and Stress Responses. Intech Journal 06: 394-441.

Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology 50, 47–65.

Lichtenthaler HK (2009) Biosynthesis and Accumulation of Isoprenoid Carotenoids and Chlorophylls and Emission of Isoprene by Leaf Chloroplasts. Bulletin of the Georgian National Academy of Sciences 3: 81-94.

Linthorst HJM (1991) Pathoneses-related proteins of plant. Critcal Reviews in Plant Sciences 10: 123-150.

Loqué D, Eudes A, Liang Y, Mitra P (2014) Lignin bioengineering in plant. Current Opinion in Biotechnology 26: 189-198.

Maldonado MT, Hughes MP, Rue EL, Wells ML (2002) The effect of Fe and Cu on growth and domoic acid production by (Pseudo-nitzschia multiseries) and (Pseudo-nitzschia australis). Limnology and Oceanography 47: 515-526.

Mansour MMF (2000) Nitrogen Containing compounds and adaptation of plants to salinity stress. Biologia Plantarum 43: 491- 500.

Maucher H, Hause B, Feussner I, Ziegler J, Wasternack C (2000) The allene oxide synthases of barley (Hordeum vulgare cv. Salome)-tissue specific regulation in seedling development PR. Plant Journal 21: 199–213.

Metraux JP, Signer H, Ryals J, Wards E, Benz MW, Gaudin J, Raschdorf K, Shid E, Blum W, Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250: 1004-1006.

Michiels K, Van Damme EJM, Smagghe G (2010) Plant-insect interactions: Wat can we learn from plant lections? Archives of Insect Bichemistry and Physiogy 73: 193-212.

Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Science 7: 405-410.

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sciences 9: 490–498.

Morisseau C, Beetham JK, Pinot F, Debernard S, Newman JW, Hammock BD (2000) Cress and potato soluble epoxide hydrolases: Purification, biochemical characterization, and comparison to mammalian enzymes. Archives of Biochemistry and Biophysics 378: 321-332.

Nahakpam S, Shah K (2012) Expression of key antioxidant enzymes under combined effect of heat and cadmium toxicity in growing rice seedlings. Plant Growth Regulation 63: 23-35.

Newman M, Thompson C, Roberts AP (2005) Helping practitioners understand the contribution of qualitative research to evidence-based practice. Journal Evidence Nursing 9: 4-7.

Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Plant Physiology 49: 249-279.

Pastsart U, Boever MD, Claeys E, Smet SD (2013) Effect of muscle and post-mortem rate of pH and temperature fall on antioxidant enzyme activities in beef. Meat Science 93: 681-686.

Qu AL, Ding YF, Jiang Q, Zhu C (2013) Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications 432: 203-207.

Rosas-Rodríguez JA, Valenzuela-Soto EM (2010) Enzymes involved in osmolyte synthesis: How does oxidative stress affect osmoregulation in renal cells. Life Sciences 87: 515-520.

Sanchez S, Demain AL (2011) Secondary Metabolites plant. Elsevier Journal 12: 155-167.

Shadmani N, Ahmad SH, Saari N, Ding P, Tajidin NE (2015) Chilling injury incidence and antioxidant enzyme activities of (Carica papaya L.) Frangi’ as influenced by postharvest hot water treatmentand storage temperature. Postharvest Biology and Technology 99: 114- 119.

Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal Botany 33: 1-26.

Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 34: 1-26.

Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology 3: 217-223.

Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress. New Tools for Reactive Oxygen Species Reseach 1. The International Journal on the Biology of Stress 141: 367-372.

Stinzi A, Heitz T, Prasad V, Wiedemann S, Geoffroy P, Legrand M, Friting B (1993) Plant PR proteins and their role in defense against pathogens. Biochimie 75: 687-706.

Teng Y, Zou L, Huang M, Zong W (2014) Molecular interaction of 2- mercaptobenzimidazole with catalase reveals a potentially toxic mechanism of the inhibitor. Journal of Photochemistry and Photobiology Biology 141: 241-246.

Tománková K, Luhová L, Petricalský M, Pec P, Lebeda A (2006) Biochemical aspects of reactive oxygen formation in the interaction between Lycopersicon spp. and Oidium neolycopersici. Physiological and Molecular Plant Pathology 68: 22-32.

Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiology 141: 373-378.

van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289: 295-297.

Van Loon LC (1984) Regulations of Pathogenesis and Symptom Expression in Diseased Plant by Ethylene. In: Fuches Y; Chalutz E. (Eds). Ethylene: biochemical, physiological and applied aspects. Netherlansds.

Van Loon LC, Geritsen YAM (1989) Protease activy and PR proteins in virus-infected samsun NN tobacco leaves. Elsevier Scientific Publishers 18: 25-32.

Vandenborre G, Smagghe G, Van Damme EJ (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72: 1538-1550.

Williams DJ, Pun S, Chaliha M, Scheelings P, O’Hare T (2013) An unusual combination in papaya (Carica papaya): The good (glucosinolates) and the bad (cyanogenic glycosides). Journal of Food Composition and Analysis 29: 82-86.

Xu Q, Cai L, Zhao H, Tang J, Shen Y, Hu X, Zeng H (2015) Forchlorfenuron detection based on its inhibitory effect towards catalase immobilized on boron nitride substrate. Biosensors and Bioelectronics 63: 294-300.

Youssef, MM, Azooz MM (2013) Biochemical studies on the effects of zinc and lead on oxidative stress, antioxidant enzymes and lipid peroxidation in Okra Hibiscus esculentus cv. Hassawi. Science International 1: 12-16.

Zhang Y (2013) Ascorbic Acid in Plants: Springer Briefs in Plant Science 22: 365-387.

Zhu JK (2002) Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53:247-273.

Publicado:

2015-06-01

Downloads

Como Citar

Colodete, C. M., Ruas, K. F., Barbirato, J. de O., Barroso, A. L. P., & Dobbss, L. B. (2015). Caracterização bioquímica das proteínas de defesa contra o estresse oxidativo em plantas e suas rotas biossintéticas dos metabólitos secundários. Natureza Online, 13(4), 196–204. Recuperado de https://naturezaonline.com.br/revista/article/view/171