Methodological discussion and piloting of Life Cycle Assessment – LCA-based environmental indicators for eco-efficiency of Brazilian building materials
Resumen
Water consumption, energy consumption and CO2 emission are indicators common to many industry sectors. Less common - but relevant - indicators are the non-renewable content and the Volatile Organic Compounds emissions. Life Cycle Assessment – LCA can support calculations of these indicators, but is still embryonic in Brazil. This paper main goals are (i) proposing a set of LCA-based indicators to assess eco-efficiency of building materials per unit of built area, (ii) analyzing differences between embodied CO2 and embodied CO2eq. of Brazilian building materials, and (iii) verifying calculation feasibility of proposed indicators based upon four case studies. Data for materials/components production cycle modeling were collected from national literature or adapted from SimaPro 7.3 built-in Ecoinvent database. Results showed that, for the studied building typologies, 80% of the total embodied energy were related to cement, steel rebar, ceramic brick, sawn timber and plywood, while the ranking for the embodied CO2 changed, showing that 89% of the total value was related to cement, ceramic brick, steel rebar, PVC tubes and conduits. Therefore, a core database for about ten materials provides a reasonable description of the building embodied energy and CO2 profile, corresponding to 98%, in both cases, of total values. For cement and concrete, partial replacement of clinker by ground granulated blast furnace slag brought substantial reductions of proposed indicators. Proposed further research is expected to contribute to constitute a Lyfe Cycle Indicators – LCI database that enables the use of the proposed metrics, and reinforces the advantages of using LCA as a decision-making tool in the national building sector.
Palabras clave:
Descargas
Citas
ABNT (1991a) Associação Brasileira de Normas Técnicas. Cimento Portland comum. NBR 5732. Rio de Janeiro.
ABNT (1991b) Associação Brasileira de Normas Técnicas. Cimento Portland composto. NBR 11.578. Rio de Janeiro.
ABNT (1991c) Associação Brasileira de Normas Técnicas. Cimento Portland de alto forno. NBR 5.735. Rio de Janeiro.
Agopyan V, Souza UEL, Paliari JC, Andrade AC (1998) Alternativas para a redução do desperdício de materiais nos canteiros de obras: relatório final. São Paulo, EPUSP/PCC.
ANE (2008) Agência Nacional de Energia Elétrica. Atlas de Energia Elétrica no Brasil. Brasília, ANE.
Basbagill J, Flager F, Lepech M, Fischer M (2012) Application of life cycle assessment to early stage building design for reduced embodied environmental impacts. Building and Environment 60: 81-92.
Bribrián IG, Capilla AV, Usón AA (2011) Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment 46: 1133-1140.
Camarini G (1995) Desempenho de misturas cimento Portland e escória de alto-forno submetidas à cura térmica. PhD Thesis. São Paulo, Escola Politécnica da Universidade de São Paulo.
Chidiac SE, Panesar DK (2008) Evolution of mechanical properties of concrete containing ground granulated blast furnace slag and effects on the scaling resistance test at 28 days. Cement & Concrete Composition 30: 63-71.
ETAP (2007) Environmental Technologies Action Plan. The Carbon Trust Helps UK Businesses Reduce their Environmental Impact. Press Release. Available at: http://ec.europa.eu/environment/etap/pdfs/jan07_carbon_trust_initiative.pdf, accessed in May 25th, 2012.
Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S(2009) Recent developments in Life Cycle Assessment. Journal of Environmental Management 91: 1–21.
Gangolells M, Casals M, Gassó S, Forcada N, Roca X, Fuertes A (2009) A methodology for predicting the severity of environmental impacts related to the construction process of residential buildings. Building and Environment 44: 558-571.
Guneyisi E, Ozturan T, Gesoglu M (2007) Effect of initial curing on chloride ingress and corrosion resistance characteristics of concretes made with plain and blended cements. Building and Environment 42: 2676-2685.
Hammond G, Jones C (2011) Inventory of carbon & energy (ICE). Bath: Department of Mechanical Engineering, University of Bath.
Hill J, Sharp JH (2002). The mineralogy and microstructure of three composite cements with high replacement levels. Cement & Concrete Composition 24: 191-199.
ISO (2006) International Organization for Standardization. ISO 14040: Environmental Management – Life cycle Principles and Framework.
Switzerland. Jefferson I, Hunt DVL, Birchall CA, Rogers CDF (2007) Sustainability indicators for environmental geotechnics. Proceedings of the Institution of Civil Engineers. Engineering Sustainability 160: 57–78.
Manfredini C, Sattler MA (2005) Estimativa da energia incorporada a materiais de cerâmica vermelha no Rio Grande do Sul. Ambiente Construído 5: 23-37.
POST (2006) Parliamentary Office of Science and Technology. Carbon footprint of electricity generation. POSTnote 268, October 2006. London, UK. Available at: http://www.parliament.uk/documents/post/postpn268.pdf, accessed in July 20th, 2012.
Saade MRM, Silva MG, Gomes V, Franco HG, Schwamback D, Lavor B (2012) Proposition and preliminary analysis of a core set of indicators to describe material eco-efficiency of Brazilian buildings. Smart and Sustainable Built Environment: proceedings. São Paulo, pp 525-532.
Silva MG (1998) Influência da cura térmica em pastas e argamassas de cimentos com escória de alto-forno. PhD Thesis. São Paulo, Escola Politécnica da Universidade de São Paulo.
Silva MG. (coord) (2006) Concreto de alto desempenho com elevados teores de escória de alto-forno: estratégia para consolidar o mercado da escória de alto-forno em cimentos e concretos. (Research report).
Silva VG (2007). Indicadores de sustentabilidade de edifícios: estado da arte e desafios para desenvolvimento no Brasil. Ambiente Construído 7: 47-66.
Tanesi J (2010) Contribuição ao desenvolvimento de especificações por desempenho para concretos com escória de alto-forno. PhD Thesis. Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Universidade Estadual de Campinas.
UN (2009) United Nations. UN ST/ESCAP/2561 – Eco-efficiency indicators: measuring resource-use efficiency and the impact of economic activities on the environment. Thailand. Available at: http://www.unescap.org/esd, accessed in May 25th, 2012.
Verbeeck G, Hens H (2010) Life cycle inventory of buildings: a calculation method. Building and Environment 47: 1037-1041.
Wiedmann T, Minx J (2008) A definition of ‘Carbon Footprint’. In: Pertsova C (ed) Ecological Economics Research Trends. New York, Nova Science Publishers, pp 1-11.
Wilson J, Tyedmers P, Pelot R (2007) Contrasting and comparing sustainable development indicator metrics. Ecological Indicators 7: 299-314.
Cómo citar
Licencia
Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.