Enzyme biomarkers in Holothuria grisea (Selenka, 1867) exposed to lead, cadmium and copper

Authors

  • Edgar R Pereira Universidade Vila Velha
  • Antônio Jesus D Cogo Universidade Vila Velha
  • Zilma Maria A Cruz Universidade Vila Velha

Abstract

Some heavy metals have the ability to bind with the side chains of amino acids that form proteins, inhibiting their specific activity. The aim of this study was to evaluate the response of enzymes: acetylcholinesterase (AChE), butyrylcholinesterase (BChE), alkaline phosphatase (ALP) and acid phosphatase (AcP) in tissues of Holothuria grisea, exposed to different concentrations of copper lead and cadmium. H. grisea were collected at Santa Cruz beach, Aracruz, ES, and transferred to aquaria containing solutions of copper sulphate (0.05, 0.075 and 0.10 mg / L copper), lead acetate (0.05, 0 10 and 0.20 mg / L lead) and cadmium chloride (0.30, 0.40 and 0.50 mg / L of cadmium). The bioassay was conducted in semi-static process, and after 96 hours, longitudinal muscles, gonads, intestines, arborescent organ were removed and processed for enzyme determination. AChE and BChE were detected in longitudinal muscle (45 mU/mg and 22 mU/mg protein respectively). Cadmium was the metal that cut the largest percentages of these enzymes. ALP was detected in intestine (873 mU/mg protein) and showed sensitivity when exposed to lead. Similar values were found for AcP were detected in arborescent organ, whose activity was 852 mU/mg protein. The highest values of inhibition were detected for individuals exposed to lead. The results indicate the possibility of H. grisea be used as a bioindicator in programs monitoring the coastal environment, once that the biochemical markers used showed sensitivity to heavy metals.

Keywords:

Holothuria grisea, AChE, BChE, ALP, AcP

Downloads

Download data is not yet available.

Author Biographies

Edgar R Pereira, Universidade Vila Velha

Mestrando em Ecologia de Ecossistemas; Laboratório de Biomarcadores de Contaminação Ambiental e Genotoxicidade, Universidade Vila Velha (UVV).

Antônio Jesus D Cogo, Universidade Vila Velha

Mestre em Biociências e Biotecnologia (UENF); Laboratório de Biomarcadores de Contaminação Ambiental e Genotoxicidade, Universidade Vila Velha (UVV).

Zilma Maria A Cruz, Universidade Vila Velha

Professor Titular IV, Bolsista de Produtividade FUNADESP; Laboratório de Biomarcadores de Contaminação Ambiental e Genotoxicidade, Universidade Vila Velha (UVV).

References

Alves C, Arruti R (2009) Hiperfosfatasemia transitória benigna da infância. Acta Ortopedica 17: 23-34.

Anandraj A, Maeshall DJ, Gregory MA, McClurg, TP (2002) Metal accumulation, filtration and 02 uptake rates in the mussel Perna perna (molusca: bivalvia) exposed to Hg2+, Cu2+ and Zn2+. Comparative Biochemistry Physiolog y 132: 355-362.

Aoyama H, Silva, TMA, Miranda MA, Ferreira CV (2003) Proteínas tirosina fosfatases: propriedades e funções biológicas. Química Nova 26: 896-900.

Bainy ACD, Saito E, Carvalho PSM, Junqueira VBC (1996) Cholinesterase activity in Gill, erythrocytes, liver and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site. Aquatic Toxicolog y 34: 151-162.

Barred AJ (1972) Lysosomal enzymes. In: Dingle JT (ed) Lysossomoes: a laboratory handbook. North-Holland, Amsterdam, pp. 46-135.

Berrahal AA, Nehdi A, Hajjaji N, Gharbi N, El-Fazâa S (2007) Fosfatase activities and in adult rat treated with lead. Comptes Rendus Biologies 330: 581-588.

Bocchetti R, Fattorini D, Pisanelli B, Macchia S, Oliviero L, Pilato F, Pellegrini D, Regoli F (2008) Contaminant accumulation and biomarker responses in caged mussels, Mytilus galloprovincialis, to evaluate bioavailability and toxicological effects of remobilized chemicals during dredging and disposal operations in harbor areas. Aquatic Toxicology 89: 257-266.

Bouraoui Z, Banni M, Ghedira J, Clerandeau C, Guerbej H, Narbonne JF, Boussetta H (2008) Acute effects of cadmium on liver phase I and phase II enzymes and metallotionein accumulation of sea bream Sparus aurata. Fish Physiolog y Biochemistry 34: 201-207.

Cajaraville MP, Babianno MJ, Blasco J, Porte C, Sarasqueste C, Viarengo A (2000) The use of biomarkers to assess the impact to pollution in coast environments of the Iberian Peninsula: a practical approach. Science of the Total Enviroment 247: 295-311.

Canesi L, Viarengo A, Leonzio C, Filipelli M, Gallo G (1999) Heavy metals and glutathione metabolism in mussel tissues. Aquatic Toxicolog y 46: 67-76.

Chandran R, Sivakumar AA, Mohandass S, Aruchami M (2005) Effect of cadmium and zinc on cholinesterase activity in the gastropod, Achatina fulica. Comparative Biochemistry and Physiolog y, Part C 140: 422-426.

Company R, Serafim A, Bebianno MJ, Cosson R, Shillito B, Fiala-Médioni A (2004) Effect of cadmium, copper and Mercury on cholinesterase activities in the gills of the hydrothermal vent mussel Bathymodiolus azoricus. Marine Environmental Research 58: 377-381.

Company R, Serafim A, Cosson R, Camus L, Shillito B, Fiala-Médioni A, Bebianno MJ (2006) The effect of cadmium on phosphatase and cholinesterase and the susceptibility in the hydrothermal vent mussel Bathymodiolus azoricus. Marine Biolog y 148: 817-825.

Company R, Serafim A, Cosson R, Camus L, Shillito B, Fiala-MéDioni A, Bebianno MJ (2009) The effect of cadmium on antioxidant responses and the susceptibility to oxidative stress in the hydrothermal vent mussel Bathymodiolus azoricus. Marine Biolog y 148: 817-825.

Firat Ö, Gök G, Çogun HY, Yuzereroglu TA, Kargin F (2008) Concentrations of Cr, Cd, Cu, Zn and Fe in crab Charybdis longicollis and shrimp Penaeus semisulcatus from the Iskenderun Bay, Turkey. Environmental Monitoring Assess 147: 117-123.

Gu Jing LY, Xie L, Zhang R (2006) Metal accumulation and enzyme activities in gills and digestive oyster (Pinctada fucata) exposed to copper. Comparative Biochemistry Physiolog y 144: 184-190.

Guilhermino L, Lopes MC, Carvalho AP, Soares AMVM (2006) Inhibition of cholinesterase activity as effect criterion in acute tests with juvenile Daphnia magna. Chemosphere 32: 727-738.

Jamet D, Aleya L, Devaux J (1995) Diel changes in the alkaline phosphatase activity of bacteria an phytoplankton in the hypereutrophic Villerest Reservoir. Hydrobiologia 301: 49-56.

Jemec A, Drobne D, Tisler T, Trebse P, Ros M, Sepcic K (2007) The applicability of acetylcholinesterase and glutathioneS-transferase in Daphnia magna toxicity test. Comparative Biochemistry and Physiolog y 144: 303-309.

Jing G, Li Y, Xie L, Zhang R (2006) Metal accumulation and enzyme activities in gills and digestive gland of pearl oyster (Pinctada fucata) exposed to copper. Comparative Biochemistry and Physiolog y, Part C 144:184-190.

Krüger LE (2001) Uma abordagem sistêmica da atual crise ambiental. Desenvolvimento e Meio Ambiente 4: 37-43.

Kutty KM (1980) Biological function of cholinesterase. Clinic Biochemistry 193: 265-75.

Laboy-Nieves EN, Conde JE (2001) Metal levels in eviscerated tissue of shallow-water deposit-feeding holothurians. Hydrobiologia 459: 19-26.

Li M, Liu Z, Xu Y, Cui Y, Li D, Kong Z (2009) Comparative effects of Cd and Pb on biochemical response and DNA damage in the earthworm Eisenia fetida (Anelida, Oligochaeta). Chemosphere 74:621-625.

Livingstone DR (1993) Biotechnology and pollution monitoring: use of molecular biomarkers in the aquatic environment. Journal Chemistry Technolog y and Biotechnolog y 57: 195-211.

Lockridge O, Bartels CF, Vangham TA, Wong CK, Norton SE, Johnson LL (1987) Complete amino acid sequence of human serum cholinesterase. Journal Biolog y Chemistry 262: 549-557.

Lowry OH, Rosembrough NJ, Farr AL (1951) Protein measurement with Folin phenol reagent. The Journal of Biological Chemistry 193: 265-275.

Martín-Díaz ML, Blasco J, Canales MG, Sales D, DelValls TA (2005) Bioaccumulation and Toxicity of Dissolved Heavy Metals from the Guadalquivir Estuary After the Aznalcólar Mining Spill Using Ruditapes philippinarum. Archives Environmental Contamination Toxicolog y 48: 233-241.

Milatovic D, Dettbarn WD (1996) Modification of acetiylcholinesterase during adaptation to chronic subcute paraoxon application in rat. Toxicolog y and Applied Pharmacolog y 136:20-28.

Mosleh YY, Paris-Palacio S, Biagianti-Risbourg S (2006) Metallothioneins induction and enzymatic activity response in aquatic worms Tubifex tubifex (Oligochaeta, Tubificidae) exposed to copper. Chemosphere 64: 121-128.

Muller TC (2002) Antidepressants inhibit human acetylcholinesterase and butyrylcholinesterase activity. Biochimica et Biophysica Acta 1587:92-98.

Marcel V, Palacios LG, Pertuy C, Masson P, Fournier D (1998) Two invertebrate acetitylcholinesterases show activation followed by inhibition with substrate concentration. Biochemistry Journal 329: 329-334.

Napierska D, Barsiene J, Mulkiewicz E, Podolska M, Rybakovas A (2009) Biomarker responses in flounder Platichthys flesus from the Polish coastal area of the Baltic Sea and applications in biomonitoring. Ecotoxicolog y 18: 846-859.

Pedrozo MFM (2003) Cobre. In: Azevedo AA, Chasin AAM (ed) Metais – Gerenciamento da Toxicidade. São Paulo, Atheneu-Intertox, pp 143-185.

Quintaneiro C, Monteiro M, Pastorinho R, Soares AMVM, Nogueira AJA, Morgado F, Guilhermino L (2006) Environmental pollution and natural populations: A biomarkers case study from de Iberian Atlantic coast. Marine Pollution Bulletin 52: 1406-1413.

Rajalakshmi S, Mohandas A (2005) Copper-induced changes in tissue enzyme activity inafreshwatermussel. Ecotoxicology and Environmental Safety 62: 140-143.

Regoli F, Nigro M, Orlando E (1998) Lysossomal and antioxidant responses to metals in the antartic scallop Adamussium colbecki. Aquatic Toxicolog y 40,:357-392.

Reichardt WJ, Overbeck J, Steubing L (1967) Free dissolved enzymes in lake waters. Nature 216: 1345-1347.

Scremin OU, Li MG, Scremin AM, Jenden DJ (1997) Cholinesterase inhibition improves blood flow in the ischemic cerebral cortex. Brain Research Bulletin 42: 59-70.

Templemen MA, Kingsford MJ (2010) Trace element accumulation in Cassiopea sp. (Scyphozoa) from urban marine environments in Australia. Marine Environmental Research 69: 63-72.

Varó I, Amat F, Navarro JC (2008) Acute toxicology of dichlorvos to Aphamicis iberus (Cuvier & Valenciennes, 1846) and its anti- cholinesterases effects on this species. Aquatic Toxicolog y 88: 53-61.

Vieira JGH (1999) Considerações sobre os marcadores bioquímicos do metabolismo ósseo e sua utilidade prática. Arquivos Brasileiros de Endocrinologia e Metabologia 43: 415-422.

Vieira LR, Gravato C, Soares AMVM, Morgado F, Guilhermino L (2009) Acute effects of copper and cadmio on the estuarine fish Pomatoschistus microps: Linking biomarkers to behavior. Chemosphere 76: 1416-1427.

Viselina TN, Luk’yanova ON (2000) Cadmium-induced Changes in the Activity of Carbohydrate Metabolism Enzymes in Mollusks. Russian Journal of Marine Biolog y 26: 289-291.

Vutukuru SS, Chintada KRM, Rao JV, Anjaneyulu Y (2006) Acute effects of copper on superoxide dismutase, catalase, cholinesterase and lipid peroxidation in the freshwater teleost fish, Esomus danricus. Fish Physiolog y and Biochemistry 32: 221-229.

Whittaker M, Britten JJ (1986) E1h, a new allele at cholinesterase locus 1. Human Hereditary 37: 54-58.

Woo S, Yum S, Park HS, Lee TK, Ryu JC (2009) Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka (Oryzias javanicus). Comparative Biochemistry and Physiolog y Part C 149: 289-299.

Zagatto PA, Bertoletti E (2006) Ecotoxicologia Aquática: princípios e aplicações. São Paulo, Rima.

Zar JH (1999) Bioestatistical Analyses. New Jersey, Prentice-Hall Press.

How to Cite

Pereira, E. R., Cogo, A. J. D., & Cruz, Z. M. A. (2014). Enzyme biomarkers in Holothuria grisea (Selenka, 1867) exposed to lead, cadmium and copper. Natureza Online, 12(1), 2–9. Retrieved from https://naturezaonline.com.br/revista/article/view/179