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Resumo  Parâmetros da fluorescência da clorofila a 
foram investigados em plantas de orquídea (Cattleya 
harrisoniana Batem Ex. Lindl.) submetidas à alta luz 
durante 35 minutos, simulando uma mancha solar. 
Reduções em Fv’/Fm’, ΦPSII e qP após a exposição 
à alta luz foram atribuídas à dissipação não-radioativa 
da energia de excitação, como indicado pelo aumento 
dos valores de 1-Fv’/Fm’, os quais contribuem para 
a auto-regulação do fotossistema II (FSII) evitan-
do a super-redução do aceptor primário de elétrons, 
quinona A (QA). Os resultados também indicam a 
ocorrência de fotoinibição dinâmica, evidenciada por 
meio da recuperação de todos os parâmetros fotossin-
téticos após a exposição a alta luz.

Palavras-chave: Luz, Fluorescência da clorofila a, 
Dissipação de energia não-radioativa, Ecofisiologia.

Abstract Parameters of chlorophyll (Chl) a fluores-
cence were investigated in orchid plants (Cattleya 
harrisoniana Batem Ex. Lindl.) submitted to high li-
ght during 35 minutes, simulating a sunfleck. Reduc-
tions in Fv’/Fm’, ΦPSII and qP after high light were 
attributable to non-radiative energy dissipation, as 
indicated by the increase of 1-Fv’/Fm’ values, whi-

ch contributed to a down regulation of photosystem 
II (PSII) avoiding the overreduction of the primary 
electron acceptor, quinone A (QA). Our results also 
indicated the occurrence of dynamic photoinhibition, 
evidenced through of recovery back to control values 
of all photosynthetic parameters after high light.

Keywords: Light, Chlorophyll a fluorescence, Non-
-radiative energy dissipation, Ecophysiology.

Introduction

	 Inside of a forest, sunflecks expose the leaves 
to full sunlight for a few minutes. Sunflecks count 
up to 85% of the total irradiance available during 
the day and are important to increase both growth 
and development of plants growing under canopy 
(WAY; PEARCY, 2012). Sunflecks also play a role 
in the carbon metabolism of lower leaves in dense 
crops that are shaded by the upper leaves of the plant 
(CHAZDON; PEARCY, 1991; KURSAR; COLEY, 
1993; WAGNER; MCGRAW, 2013). However, de-
pending of intensity and duration of sunflecks, the 
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leaves should be exposure to strong light intensity 
resulting in inhibition of the activity of photosystem 
II (PSII) or photoinhibition (MURATA et al., 2007). 
The photoinhibition is characterized by inactivation 
and damage to the D1 protein, reduction of the maxi-
mum quantum efficiency of CO2 uptake and the ac-
cumulation of oxygen reactive species (ROS) which 
damage the cell membranes (TAKAHASHI; BAD-
GER, 2011). Further, the reduction of the maximum 
photosynthetic rate reduces the carbon gain and plant 
growth (VAN HEERDEN et al., 2007; GONÇAL-
VES et al., 2010; TAKAHASHI; BADGER, 2011; 
ADAMS III et al., 2013). The phenomenon of pho-
toinhibition is unavoidable in all photosynthetic or-
ganisms (MURATA et al., 2007).
	 However, several mechanisms should be used 
by plants to minimizing the effects of photoinhibition 
on photosynthetic apparatus, repairing effectively 
the photodamage on PSII such as reversible phos-
phorylation of PSII core subunits and monomeriza-
tion and migration of the PSII core from the grana 
to the stroma lamellae (ARO et al., 2005). In addi-
tion, an efficient enzymatic and non-enzymatic sys-
tem can scavenging the ROS formed due high light 
(TAKAHASHI; BADGER, 2011; GHOLAMIA et 
al., 2012). Also, the high light should be dissipated 
as thermal energy (qE), fluorescence emission, cy-
clic electron flow (CEF) around photosystem I (PSI), 
photorespiratory pathway and heat dissipation and 
transference from PSII to FSI (NPQ) (RALPH; GA-
DEMANN, 2005; ARO et al., 2005; TAKAHASHI; 
BADGER, 2011), which is connected directly to the 
xanthophyll cycle. Thus, the excitation energy is dis-
sipated as heat (thermal dissipation) and therefore 
protect against photoinhibition (KRAUSE; WEIS, 
1991; ESSEMINE et al., 2012).
	 The effects of sunflecks on photochemical 
activity were registered in other plant species, such 
as Swietenia macrophylla King (Meliaceae) and 
Minquartia guianensis Aubl. (Olacaceae), Bauhinia 
forficate Link (Fabaceae) and the late successional 
Esenbeckia leiocarpa Engl. (Rutaceae) (DIAS; MA-
RENCO, 2006; PORTES et al., 2006). However, in 
orchids plants, no study regarding the effects of high 
light simulating sunfleck was made. Thus, in this stu-
dy, we evaluated the Chl a fluorescence in Cattleya 
harrisoniana (Orchidaceae) Batem ex. Lindl.  an or-
chid species adapted to partial shade. 

Methods

Cattleya harrisoniana specimens, obtained from a 
private nursery (São Mateus, Espírito Santo State, 
Brazil), were used in this study. In this nursery, the 
plants were grown under approximately PPFD 100-
200 μmol m-2s-1 and temperature of the air ranging 
from 24 to 30°C until the begin of experiment. Rela-
tive humidity was 70-80%. The plants were watered 
daily and fertilized with a nitrate-based commercial 
fertilizer (N: P: K ratio of 1: 1: 1) when necessary. 
The experiment consisted of exposure of plants to 
full sunlight (which occurred at 13h under ~2260 
µmol m-2s-1) in a clear day for 35 min. Before (at 8h), 
the first Chl a fluorescence measurement (considered 
as control) was carried out on plants raised in the nur-
sery. Afterwards, the measurements were performed 
during the day in intervals of 2 hours until 19h. In 
order to test the recovery capacity of plants, a new 
evaluation was performed after 24 hours (8h after 
the last day). Irradiance was recorded with a quan-
tum sensor (QSPAR, Hanstech, UK). Chl a fluores-
cence measurements were performed on intact leaves 
fully expanded using a pulse-amplitude-modulated 
(PAM) Chl fluorimeter (FMS-2, Hansatech, UK). 
Measurements were taken of the middle part of the 
leaf. The following  parameters  were  determined: 
initial fluorescence, Fo.,  maximal efficiency of PSII 
photochemistry, Fv/Fm; effective efficiency of PSII 
photochemistry,  Fv’/Fm’; the non-radiative energy 
dissipation, 1 – (Fv’/Fm’); photochemical  quenching  
coefficient, qP  =  (Fm’  -  Fs)/(Fm’  -  Fo’);  actual  
quantum  yield of  PSII  electron  transport  in  ligh-
t-adapted  state and φPSII =  (Fm’  -  Fs)/Fm’ (GEN-
TY  et  al.,  1989). Data were subjected to analysis of 
variance (ANOVA). A Tukey test (p<0.05) was used 
to compare means among treatments.	

Results
	
	 The photosynthetically active radiation (μmol 
m-2s-1) and leaf temperature (°C) of C. harrisoniana 
were significantly (p≤0.05) high through the duration 
of the sunfleck and decreased until 19h. After 24 hou-
rs (8h after the last day), both RFA and leaf tempera-
ture were nearly to control conditions, evidencing the 
recovery to initial conditions observed at 8h (Fig 1).



Zampirollo JB et al.
Photochemical activity of Cattleya harrisoniana
ISSN 1806-7409  www.naturezaonline.com.br 023

Figure 1  Daily course of photosynthetically active radiation - PAR [μmol(photon) m-2s-1] and leaf 
temperature (ºC) of C. harrisoniana. Values are means (±S.E.) for four plants (Tukey test, p≤0.05).

Figure 2 shows the relationship between Chl a flu-
orescence parameters evaluated in C. harrisoniana 
specimens submitted to high light. The Fv’/Fm’ ra-
tio, which expresses the effective efficiency of PSII 
photochemistry measured in light-adapted samples 

(ROHÁCEK, 2002), was initially unaffected by high 
light. However, a strong decrease in Fv’/Fm’ values 
of about -68% (0.227 to 0.071 from 13 to 19h, res-
pectively) occurred 6h after sunfleck (Fig. 2A). 

Figure 2 Effective efficiency of PSII photochemistry  in  dark-adapted  state  (Fv’/Fm’ - A), actual  
quantum  yield of  PSII  electron  transport  in  light-adapted  state (φPSII – B), the non-radiative 
energy dissipation [1 – (Fv’/Fm’) – C], the photochemical  quenching  coefficient (qP – D) in speci-
mens of C. harrisoniana submitted to high light during 35 minutes, simulating a sunfleck. Arrow in-
dicates the application of sunfleck (13h). Values are means (±S.E.) for four plants (Tukey test, p≤0.05).
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Discussion

	 The decrease of ΦPSII in C. harrisoniana 
after sunfleck suggest that lower light energy could 
be delivered to the reactions center (MÜLLER et al., 
2001), reflecting in reduced PSII photochemical ef-
ficiency and dissipation values (Fig. 2A,B). The de-
cline of Fv’/Fm’, ΦPSII and qP after high light was 
attributable to non-radiative energy dissipation, as 
indicated by the increase of 1-Fv’/Fm’ values. Incre-
ases in non-radiative dissipation of excitation energy 
in response to high light decrease the probability of 
photodamage by relieving the excitation pressure on 
PSII, resulting in the maintenance of a greater open-
ness of PSII centers. In this study, the relevance of 
non-radiative dissipation of excitation energy pro-
cess in C. harrisoniana appeared especially during 
the first times after high light exposition. The non-
-radiative dissipation of excitation energy is one of 
the most important photoprotective processes and 
it should be used to quantify the operation of pho-
toprotective processes as well as the extent of pho-
toinhibitory damages. In this study, the increase of 
dissipation (1-Fv’/Fm’) followed to the decrease of 
parameters related to photochemical efficiency (Fv’/
Fm’, ΦPSII and qP) contributed to a down regulation 
of PSII avoiding the overreduction of the primary 
electron acceptor (QA) in C. harrisoniana speci-
mens. Thus, these results give us evidence about the 
capacity of C. harrisoniana to coupe with high ener-
gy of excitation common in the natural environment, 
which are subject to fluctuations in irradiance on a 
time-scale ranging from seconds to seasons and must 
cope with the quantity of the photons varying over 
several orders of magnitude (ŠTROCH et al., 2004).
	 Augusti et al. (2001) and Hanachi et al. (2014) 
discussed the role of these non-photochemical dissi-
pations process such as mechanism of photoprotec-
tion in Ramonda serbica  Panc. (Gesneriaceae) under 
drought stress and in eggplant (Solanum melongena 
L.) cultivars growing on different salt concentrations, 
respectively. During drought stress, the plants of R. 
serbica showed an increase of the content of zeaxan-
thin (and antheraxanthin), which are a prerequisite for 
non-photochemical dissipations process (AUGUSTI 
et al., 2001). Others components, such as ascorbate 
and glutathione, also are efficient mechanism of pro-
tection and it could be efficiently utilized in response 

to high light. In other studies, significant increases 
in non-photochemical dissipations also were repor-
ted in stressed plants, with significant reduction in 
the maximum  quantum yield of PSII photochemistry 
(Fv/Fm) and the electron  transport rate (MORADI; 
ISMAIL, 2007; ZRIBI et al., 2009). 

Conclusion
	
	 The results of the present study indicate the 
occurrence of dynamic photoinhibition in C. har-
risoniana, evidenced through of recovery back to 
control values of all photosynthetic parameters 
analyzed after high light. Non-radiative dissipation 
has a major photoprotective mechanism against 
photoinhibition in C. harrisoniana after sunfleck.
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